Slide 1

Produção, visualização e análise de grandes volumes de imagens de sensoriamento remoto modeladas como cubos de dados multidimensionais para todo o território brasileiro.

Slide 1

O Data Cube Explorer é um portal web para visualização de cubos de dados, coleções de imagens e classificações.

previous arrow
next arrow

SITS – Satellite Image Time Series Analysis for Earth Observation Data Cubes

O pacote sits é um software de código aberto para análise, visualização e classificação de dados de séries temporais de imagens de satélite.

O pacote sits foi projetado para trabalhar com grandes conjuntos de dados de imagens de satélite e para suportar totalmente todas as etapas do fluxo de trabalho de classificação de uso e cobertura da terra, incluindo, mas não limitado a: seleção de amostras, agrupamento de séries temporais, treinamento e validação de modelos de aprendizado de máquina, classificação e pós-processamento de mapas.

Sits

Publicações associadas

Satellite Image Time Series Analysis for Big Earth Observation Data

by Rolf Simoes 1 , Gilberto Camara 1, Gilberto Queiroz 1, Felipe Souza 1, Pedro R. Andrade 1, Lorena Santos 1, Alexandre Carvalho 2 and Karine Ferreira 1 1National Institute for Space Research (INPE), Avenida dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos, SP 12227-010, Brazil 2National Institute for Applied Economics Research, SBS, Quadra 1 Bloco J, Brasília, DF 70076-900, Brazil Remote Sens. 2021, 13(13), …

Quality control and class noise reduction of satellite image time series

by Lorena Alves Santos 1,*,Karine Ferreira 1,Michelle Picoli 1,Gilberto Camara 1, and Rolf E. O. Simoes¹ 1Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), Avenida dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos, SP 12227-010, Brazil DOI: https://doi.org/10.1016/j.isprsjprs.2021.04.014 Publisher: ScienceDirect | Published: 15 May 2021 Abstract The extensive amount of Earth observation satellite images available brings opportunities …

Brazil Data Cube - 2019 - 2025