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ABSTRACT

This work integrates optical and radar data cubes to
detect forest disturbances in tropical regions. Our method
identifies initial degradation and selective logging, often
precursors to deforestation, demonstrating its utility in early-
warning systems. These results emphasizes the crucial role of
integrating optical and radar data to improve the precision and
dependability of monitoring systems, essential for sustainable
forest management. These findings highlight the value of
integrating multi-source data cubes to enhance precision
in monitoring forest disturbances, thereby supporting more
responsive and reliable environmental management.
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1. INTRODUCTION

Protecting tropical forests plays a critical role in controlling
global carbon levels and preserving biodiversity on both a
global and local scale [1]. Tropical forests contribute to
maintaining water cycles, soil preservation, and promoting
socio-economic benefits [2]. Having up-to-date data on
deforestation is crucial for properly managing and preserving
natural resources. Monitoring deforestation in near real-time
(NRT) can help governments and communities enhance forest
management and quickly respond to illegal deforestation [1].

The Brazilian National Institute for Space Research (INPE)
operates the Real-Time Deforestation Detection System
(DETER) for continuous monitoring of deforestation and
forest degradation [3] using near-real-time satellite images.
DETER is a global reference system for detecting forest
disturbances. DETER’s primary purpose is to provide data on
where vegetation changes are happening and how extensive
they are and assist in enforcement operations and regulations
targeting deforestation.

DETER faces two major limitations. The first issue
relates to optical sensor images, which can be affected by
atmospheric disturbances like clouds, cloud shadows, and
cirrus. Furthermore, experts identify changes in land cover
through visual interpretation. Every scene needs to be analyzed
by an expert, which requires a lot of human resources.

As an alternative, researchers are developing automated
and semi-automated methods for detecting tropical forest
disturbances [4–7]. Hoekman et al. [5] and Doblas et al. [7]
propose using Sentinel-1 radar time series for detecting forest

disturbances. Reiche et al. [8] develop Bayesian methods
for combining Landsat and ALOS PALSAR. Hirschmugl et
al. [6] use empirical thresholds for detecting disturbances on
radar and optical images. These results show that it is feasible
to use radar and optical imagery to identify disturbances in
tropical forests. Doblas et al. [9] argue that combining optical
and radar imagery improves detection capabilities for forest
disturbances. Optical images offer specific target details, while
radar images remain unaffected by cloud cover.

This work uses a multi-source integration of optical and
radar data cubes to identify forest disturbances. We conducted
an experiment in Rondonia using CBERS-4 and CBERS-4A
WFI and Sentinel-1 satellite data, implementing the Bayesian
approach introduced by Reiche et al. [4]. Our results compare
favourably with the results from DETER and show that multi-
satellite automatic event detection is a viable alternative to
visual interpretation.

2. METHODS

Reiche et al. [8] propose the BayTS approach to combine
optical and radar time series images using Bayesian statistics.
Using a Gaussian distribution, the algorithm calculates the
conditional probabilities for each time series for the Forest
and Non-Forest classes. For a selected observation time t,
all Non-Forest probabilities greater than 0.5 are labelled as
likely deforestation areas. For each labelled series, a Bayesian
method recalculates the conditional probability of Non-Forest.
This is done using an iterative Bayesian update, taking the
previous time (t− 1), the given time (t), and new observations
that have arrived after the labelling procedure(t + i). After
the Bayesian update, each observation is either confirmed
or rejected as a disturbance event in the time series of each
satellite sensor.

This work uses the BayTS approach to process image time
series extracted from a multi-source Earth observation data
cube (see Figure 1). Probabilities of Forest and Non-Forest
are calculated for each time series in the data cube. Based on a
threshold, these probabilities determine whether a time series
is classified as a Forest. The result is a vector map with the
dates when disturbances were identified.

Earth Observation Data Cubes (hereafter referred to as data
cubes) are multidimensional data structures with three or more
dimensions (e.g., space, time, spectral bands), facilitating the
extraction of insights from Big Earth Observation Datasets.
Using a data cube, researchers and specialists explore
the dynamics of the Earth over the years. A data cube
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Figure 1: Overview of processing chain for disturbance
detection.

comprises Analysis-Ready Data (ARD), defined according
to the Committee on Earth Observation Satellites (CEOS)
standards. Thanks to its valuable properties, several initiatives
are building data cubes at the national level, such as the Swiss
Data Cube [10], Australia Data Cube [11] and Brazil Data
Cube [12].

3. RESULTS AND DISCUSSIONS

To test our proposed method, we performed a case study
in an area in the north of Rondonia (RO) in the Brazilian
Amazon (Figure 2), in tile 003003 (BDC Large tile system).
Rondonia is characterised by its complex environmental
dynamics and significant ecological importance. Rondonia
has experienced extensive land-use changes over the past
few decades, primarily due to agricultural expansion, cattle
ranching, and logging activities. Significant human occupation
began in the 1970s, driven by settlement projects promoted
by Brazil’s then-military government [13]. Small- and large-
scale cattle ranching now occupies most of the deforested
areas. Deforestation in Rondonia is highly fragmented,
partly due to the initial settlement by small farmers. This
fragmentation presents considerable challenges for automated
methods attempting to distinguish between clear-cut and
highly degraded areas. While visual interpreters can draw on
experience and field knowledge, researchers must meticulously
train automated methods to achieve the same level of
distinction.

This study uses two data cubes from the study area, created
based on CEOS-ARD definitions. The first contains a Sentinel-
1 C band with VH polarisation. The second contains EVI data
from CBERS-4 and CBERS-4A WFI produced by the BDC
project. The cubes were created using temporal aggregation
of eight days. We consider the dates of both data cubes from
January 2023 to December 2023. We use a Bayesian approach
to integrate these two data cubes for forest disturbance
detection in a Rondonia region.

We compared our results with the DETER polygons from
2023 to evaluate the proposed method. The identification
results are made pixel by pixel. Several BayTS detections
may exist with different dates in a single DETER polygon.
Thus, to compare the results, we initially calculated the
average of the BayTS detection dates in each DETER polygon.

Figure 2: Region of interest in Rondonia.

Then, we calculated the difference between DETER dates
and the average date. The resulting data were then grouped by
DETER deforestation classes: Burn Scar, Disordered Selective
Logging, Geometric Selective Logging, Degradation, Clear-
Cutting Deforestation, and Vegetation Clearance.

The temporal difference in days between our methodology
and the DETER polygons is presented in Table 1. The
average difference in days may be either negative or positive:
negative values indicate points identified before DETER, while
positive values denote identification occurring after. All of
our detections were made before DETER, with a minimum
difference of 16 days and a maximum of 183 days.

DETER classification Mean detection difference
(in days ±)

Burn Scar -87.8
Disordered Selective Logging -183.
Geometric Selective Logging -142.

Degradation -89.4
Clear-Cutting Deforestation -16.6

Vegetation Clearance -61.1

Table 1: Mean detection time differences between DETER and
BayTS.

The most significant differences occur in degraded areas,
such as Disordered Selective Logging and Geometric Selective.
This is due to the low atmospheric interference in radar images,
which enabled a higher frequency of observations at the onset
of selective logging events. However, clear-cut areas showed
minor differences since complete vegetation removal occurs
briefly.

The Burn Scar areas had a average difference of 87 days.
This difference does not imply a delay in DETER’s detection.
A possible explanation is that other events, such as Clear-
Cutting Deforestation, occurred before the burn, shortening the
detection period. Another explanation could be the widespread
cloud coverage in the Amazon region, which increases the
detection time using optical data.

Table 2 compares the areas (in hectares) of each DETER
class with those produced by BayTS. Selective logging classes
show a high discrepancy between areas where only part of
the vegetation is removed. This difference arises from the
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fact that DETER polygons are created by specialists who
classify the entire region as selectively logged. In contrast, our
automated method identifies only the pixels where selective
logging occurred. Event-related classes such as Clear-Cutting
Deforestation and Burn Scar have larger areas in BayTS than
in DETER. This difference is due to the higher level of detail
captured by radar imagery, which allowed for more precise
delineation of the events detected.

DETER
classification

DETER
Area (ha)

BayTS
Area (ha)

Burn Scar 920,52 928,15
Disordered Selective Logging 5985,44 996,14
Geometric Selective Logging 1823,19 73,72

Degradation 1818,41 729,49
Clear-Cutting Deforestation 5920,34 6283,26

Vegetation Clearance 207,07 128,61

Table 2: Comparison between areas measured by DETER and
BayTS for each disturbance class.

Figure 3 shows visual examples of areas detected by DETER
and the BayTS approach. The differences between how visual
interpreters and detection algorithms work are illustrative.
Experts tend to delineate closed polygons, which approximate
the effect of degradation and disturbance identified in the
images. There is a high degree of generalisation resulting from
expert knowledge. By contrast, automated methods work pixel-
by-pixel and may underestimate the degraded area. These
results indicate a possible combination of specialist knowledge
and automated processes complementing each other.

4. CONCLUSIONS

This study shows how to combine time series and presents
the potential of using optical and radar data cubes to detect
forest disturbances. Integrating radar and optical data cubes
through the BayTS approach offers significant advantages
for monitoring forest disturbances. It reduces noise and
enhances spatial consistency. BayTS effectively identifies
initial degradation, and selective logging, often precursors
to deforestation, demonstrating its utility in early-warning
systems. These findings highlight the value of integrating
multi-source data cubes to enhance precision in monitoring
forest disturbances, thereby supporting more responsive and
reliable environmental management.

The results improve on accuracies reported in previous
papers [8, 9]. The main difference between our work and prior
papers is the choice of EVI time series instead of NDVI data,
which was used by Reiche et al. [8]. Also, the intercomparison
paper by Doblas et al. [9] only used Sentinel-1 data for the best-
performing methods. We also calibrated the BayTS parameters
to increase the importance of radar data. Our work indicates
that there are substantial grounds for improvement in detecting
degradation and disturbance of tropical forests using multi-
source data.

Figure 3: Sampling areas of each DETER classification

CODE AND DATA AVAILABILITY

We implemented a high-performance version of BayTS
approach in sits [14], an open-source R package for
satellite image time series analysis. The code and
data used in the experiment presented in this paper are
available on GitHub: https://github.com/OldLipe/
bayts-paper-sbsr25. The study used the open source
software SITS, developed in R language and available
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on the GitHub platform at https://github.com/
e-sensing/sits. The SITS documentation is available
in an online book: https://e-sensing.github.io/
sitsbook/.
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