
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjde20

International Journal of Digital Earth

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjde20

Brazil Data Cube Workflow Engine: a tool for big
Earth observation data processing

Vitor C. F. Gomes, Gilberto R. Queiroz, Karine R. Ferreira, Edzer Pebesma &
Claudio C. F. Barbosa

To cite this article: Vitor C. F. Gomes, Gilberto R. Queiroz, Karine R. Ferreira, Edzer Pebesma
& Claudio C. F. Barbosa (2024) Brazil Data Cube Workflow Engine: a tool for big Earth
observation data processing, International Journal of Digital Earth, 17:1, 2313099, DOI:
10.1080/17538947.2024.2313099

To link to this article: https://doi.org/10.1080/17538947.2024.2313099

© 2024 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 09 Feb 2024.

Submit your article to this journal

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tjde20
https://www.tandfonline.com/loi/tjde20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17538947.2024.2313099
https://doi.org/10.1080/17538947.2024.2313099
https://www.tandfonline.com/action/authorSubmission?journalCode=tjde20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjde20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/17538947.2024.2313099
https://www.tandfonline.com/doi/mlt/10.1080/17538947.2024.2313099
http://crossmark.crossref.org/dialog/?doi=10.1080/17538947.2024.2313099&domain=pdf&date_stamp=09 Feb 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/17538947.2024.2313099&domain=pdf&date_stamp=09 Feb 2024

Brazil Data Cube Workflow Engine: a tool for big Earth
observation data processing
Vitor C. F. Gomesa, Gilberto R. Queirozb, Karine R. Ferreirab, Edzer Pebesmac and
Claudio C. F. Barbosab

aC4ISR Division, Institute for Advanced Studies (IEAv), São José dos Campos, Brazil; bEarth Observation and
Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos, Brazil; cInstitut für
Geoinformatik, Westfälische Wilhelms-Universität, Münster, Germany

ABSTRACT
Earth Observation (EO) satellites have produced vast image collections
that are freely accessible to society. However, handling these images
often surpasses the capabilities of traditional hardware and software for
EO data storage and processing, posing challenges for traditional
Spatial Data Infrastructure (SDI). To overcome these challenges,
innovative cloud computing and distributed systems have been
developed, such as matrix databases, MapReduce systems, and web
services. These technologies are now integrated into leading-edge
platforms, forming a new generation of SDI for big EO data. These
platforms have different characteristics in terms of governance,
technologies, data access, infrastructure abstractions, data processing,
and flexibility to extend their functionality. Our work contributes to the
area of SDI for big EO data by proposing a server-side data-processing
tool called Brazil Data Cube Workflow Engine (BDC-WE), based on
workflow orchestration approach. BDC-WE provides a high-level
interface using the openEO API for big EO data accessing and
processing, allowing SDI maintainers to easily describe sequences of
processes and integrate new algorithms. The architecture proposed in
this study was implemented and the prototype was evaluated in two
case studies described in this paper.

ARTICLE HISTORY
Received 12 September 2023
Accepted 25 January 2024

KEYWORDS
Big data; Earth observation
data; spatial data
infrastructure; openEO;
workflow orchestration

1. Introduction

Earth observation (EO) data is crucial to map and comprehend the processes that occur on our pla-
net, promoting significant advancements in monitoring environmental changes, risk detection,
urban occupation, surface temperature, and food security (Brown 2016; Kamali Maskooni
et al. 2021). EO data sets are important sources to measure global indicators of United Nations’ Sus-
tainable Development Goals (SDGs), including Indicator 15.3.1 on land degradation (Giuliani
et al. 2020) or Indicators 11.3 and 11.7 on land use and land cover (Ekim and Sertel 2021). By
extracting information from EO data, researchers and policymakers can formulate and implement
effective policies for protecting the environment and managing natural resources.

Satellite observations and geospatial data are being produced and shared at an unprecedented
rate with petabyte production on a daily basis (Soille et al. 2018). Storing, processing, and analyzing

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this
article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

CONTACT Vitor C. F. Gomes vitorvcfg@fab.mil.br, vconrado@gmail.com Institute for Advanced Studies, Trv Cel Av Jose A.
A. do Amarante 01, São José dos Campos, SP, 12228-001, Brazil

INTERNATIONAL JOURNAL OF DIGITAL EARTH
2024, VOL. 17, NO. 1, 2313099
https://doi.org/10.1080/17538947.2024.2313099

http://crossmark.crossref.org/dialog/?doi=10.1080/17538947.2024.2313099&domain=pdf&date_stamp=2024-02-08
http://creativecommons.org/licenses/by/4.0/
mailto:vitorvcfg@fab.mil.br
mailto:vconrado@gmail.com
http://www.digitalearth-isde.org/
http://english.aircas.ac.cn/
http://www.tandfonline.com

these vast datasets pose significant technological challenges that limit the ability of EO scientists to
take advantage of their potential. These datasets often exceed the storage, processing, and memory
capacities of personal computers, leading users to utilize only a fraction of the available data for
scientific research and operational applications (Camara et al. 2016; Müller, Bernard, and Brau-
ner 2010; Xu et al. 2022). Thus, novel technological solutions are required to adequately store, pro-
cess, disseminate, and analyze these big EO datasets.

Spatial Data Infrastructure (SDI) provides an environment that fosters the use, management,
and production of geospatial data by allowing people and systems to interact with
technology (Masser 2019). In recent years, SDIs have implemented technological components
that adopt the standards proposed by the Open Geospatial Consortium (OGC) and Inter-
national Organization for Standardization (ISO) to store, represent, disseminate, and process
geospatial data. However, most current SDIs primarily focus on sharing and disseminating
EO data as individual files through web portals and various protocols, such as HTTP, FTP,
and SSH (Müller 2016).

1.1. Related big EO processing solutions

In the context of big EO data, managing, processing, and disseminating this enormous amount of
data poses significant challenges for SDIs. This scenario demands more structured and precise
research services, automated acquisition, spatiotemporal indexes, calibration, and availability pro-
cesses, as well as the ability to process data sets in the server-side, without needing to move them
across the network (Camara et al. 2016; Xu et al. 2022).

To address these challenges, the EO community has developed new technologies in the form of
platforms for big EO data. Serving as computational solutions, they offer a range of functionalities
for managing, storing, and accessing extensive EO data. These platforms allow server-side proces-
sing, eliminating the need to download massive amounts of EO datasets. In addition, they provide a
certain level of data and processing abstractions that are useful to EO community users and
researchers (Gomes, Queiroz, and Ferreira 2020). The integration of different types of technologies,
Application Programming Interfaces (APIs), and web services results in a more comprehensive sol-
ution for managing and analyzing extensive EO data. Examples of platforms for big EO data are
Open Data Cube (ODC) (Killough 2018), Google Earth Engine (GEE) (Gorelick et al. 2017), JRC
Earth Observation Data and Processing Platform (JEODPP) (Soille et al. 2018), Sentinel Hub
(SH) (Milcinski and Kolaric 2023), pipsCloud (Wang et al. 2018), SEPAL (FAO 2023) and openEO
platform (Schramm et al. 2021). They adopt different data abstractions, standards, or technological
solutions despite their similar functionalities.

Gomes, Queiroz, and Ferreira (2020) performed a review and comparative analysis of these plat-
forms in relation to ten capabilities, including governance, infrastructure, data and processing
abstractions, and extensibility. They pointed out that the greater the degree of abstraction delivered
to the scientist, the greater the difficulty in providing flexibility in data-processing approaches. Plat-
forms for big EO data need layers of abstractions that enable both data scientists and data pro-
duction staff to express computations that exploit available computational resources. One
possible alternative would be to provide scientists with a platform that provides two ways to per-
form server-side data processing. In the first form, an API with a high-level abstraction is made
available for scientists to describe their analyzes in a manner equivalent to that provided by GEE
or openEO. The second way allows new algorithms to be added to the platform. These algorithms
would directly access the data and take advantage of the distributed processing capabilities provided
by the platform.

In the Brazilian context, the Brazil Data Cube (BDC) project is an initiative of the National Insti-
tute for Space Research (INPE) to develop a platform for big EO data management and analysis.
This project is producing 2 petabytes of Analysis-Ready Data (ARD) and multidimensional EO
data cubes of satellite images Landsat-8/-9, Sentinel-2, CBERS-4/-4A and Amazonia for the entire

2 V. C. F. GOMES ET AL.

Brazilian territory (Ferreira et al. 2022, 2020). Besides that, it is developing a platform called Brazil
Data Cube with services and tools to create, access, and analyze EO data cubes.

Currently, most of the ARD and EO data cubes of the BDC project are produced using two appli-
cations developed by the project team, BDC Collection Builder (Marujo et al. 2022) and BDC Cube
Builder (Ferreira et al. 2022). These applications are configured by maintainers to discover and
retrieve scenes from external providers of EO datasets, to index them in collections, to produce
ARD and EO data cubes. These applications are configurable through the definition of processing
workflows to enable the production of different types of products. This process is performed by
defining a structure in JSON format that specifies the selection, parameterization, and chaining
of a set of operations previously implemented in these tools (Marujo et al. 2022). There are two ver-
sions of these applications, one runs on AWS using Lambda services, and another runs on INPE’s
on-premise servers (Ferreira et al. 2022).

To analyze the ARD and EO data cubes, the BDC project team provides a JupyterHub environ-
ment for associated researchers. In this interactive environment, scientists can develop and run
scripts to process and analyze EO data using the on-premise servers of the INPE’s internal infra-
structure. To produce land use and land cover maps, these scientists use the SITS (Satellite
Image Time Series) R package. This package provides functions to produce land use and cover
maps from image time series extracted from EO data cubes using machine and deep learning
methods (Simoes et al. 2021). This package uses parallelization techniques to speed up the proces-
sing of datasets. However, there is no native support for large-scale processing of clusters of com-
puters, as available in the BDC Collection Builder and BDC Cube Builder tools.

The ARD and EO data cubes of the BDC project can also be accessed and processed by the ODC
framework. To integrate the BDC platform with the ODC framework, a tool for importing data was
developed, and ODC modules were adapted to support the data produced by the BDC
project (Gomes et al. 2021). As a result, this integration is made available to BDC users: (1) the
ODC API in the BDC JupyterHub environment; (2) services for viewing metadata and data
(ODC datacube-explorer and ODC datacube-ows); and (3) the ODC Stats tool, which allows parallel
processing of scenes recorded in an ODC catalog.

Similar to the BDC Cube Builder, the ODC Stats is a command line tool that provides a set of
previously defined statistical processing, but allows new processing functions to be added from
the extension of the Statistic class and the implementation of two new methods: – Measurements,
which provides a list of measurements that the class will produce, and – compute, which takes a
xarray.Dataset and returns a xarray.Dataset with the computed measurements (Killough, Rizvi,
and Lubawy 2021). Scene processing is described using a YAML file.

1.2. Our proposal

A common characteristic observed in all solutions in the previous subsection is the approach
used to describe the processing tasks. The explicit or implicit use of Directed Acyclic Graphs
(DAGs) to represent workflows has been observed in GEE, openEO, BDC Collection Builder,
BDC Cube Builder, and ODC Stats. While BDC Collection Builder, BDC Cube Builder, and
ODC Stats use text files to describe processing flows, GEE and openEO provide a higher-level
interface, allowing the user to write code in a programming language (Javascript and Python
for GEE and Javascript, Python, and R for openEO). In both cases, these scripts are converted
into data structures that represent DAGs and are sent to run on the backend. Using this tech-
nique of sending code close to the data, known as the Moving Code approach (Müller 2016), EO
platforms are evolving to integrate data ready for analysis and technologies for extracting infor-
mation on the server side.

To address the BDC project demand for providing a system where users and developers can
describe sequences of processes to be efficiently executed in the project server-side infrastructure,
we propose a tool called BDC Workflow Engine (BDC-WE). This paper presents the software

INTERNATIONAL JOURNAL OF DIGITAL EARTH 3

archicture and the prototype of this tool. The BDC-WE uses DAGs as a core concept and integrates
the openEO API to allow the submission and control of processes by the users. To take advantage of
all computational power available in the INPE’s infrastructure of the BDC project, this system uses
technologies for orchestrating processes distributed in clusters of computers.

The remainder of this paper is organized as follows. In Section 2, we present the main concepts
adopted and the proposed architecture. Section 3 describes the implementation of the BDC-WE
prototype. Section 4 presents two study cases. In the first one, legacy processing flows from
INPE’s Mapaquali project were converted to DAGs to be processed in the BDC-WE. In the second
case study, the processing flow of a land use and land cover classification application written in R
language using SITS package was converted into DAGs and executed using the BDC-WE. Finally, in
Section 5, we present the final considerations and the future steps that will be carried out.

2. BDC-WE: A tool for big EO processing

The BDC-WE architecture uses workflow as a central concept for the representation of processing
described by the chaining of tasks. Direct Acyclic Graphs (DAGs) are used to represent these
workflows. In this approach, each vertex of a graph represents a specific operation and the edges
indicate the data dependency between each operation. The nomenclature defined by openEO is
used as reference (Schramm et al. 2021). Vertices (tasks) are called Process(es) and chains of Process
(DAG) are called Process graph(s)(PGs).

Figure 1 illustrates a simple example of PG with four Processes. This workflow, which illustrates
data collection from an external provider, includes Processes for: (i) scene discovery from an exter-
nal provider; (ii) downloading the scenes to a local repository; (iii) registration of new scenes in a
metadata catalog; and (iv) publication of new scenes in a Web Map Service (WMS).

In the BDC-WE architecture, Process represents a meta-task, which means an operation class
that does not have a functional core that actually performs the expected operation. BDC-WE
uses an abstraction called Resources to configure the Process with the operations to be performed.

Figure 2 shows the BDC-WE architecture. Some elements of this diagram represent software
artifacts (Resources, Processing repository, and openEO Client), tools for workflow orchestration
and task execution (Workflow Orchestrator and Workers), (web)services (openEO Backend, Rest
API, and External Services), and Graphical User Interfaces (GUIs) (openEO Web Editor and
Workflow Orchestrator Interfaces).

There are three different kinds of actors that interact with a BDC-WE instance: (1) Developers:
people responsible for deploying or maintaining a BDC-WE instance. They have technical knowl-
edge for configuring BDC-WE and the other tools/services used; (2) Experts: people who master the
topic of data products that are produced on the BDC-WE platform. They are responsible for the
creation and parameterization of the algorithms that generate the data products; and (3) Users:
people who make use of the services, APIs, or GUIs available in a BDC-WE instance. These actors
do not need to have technical mastery of the inner workings of BDC-WE.

Resources are software artifacts (classes or functions) that abstract elements managed by the plat-
form and that provide the implementations of the processing that will be performed. They must be
accessible to Workers so that they can be instantiated and passed as a dependency on Processes. For
instance, to record scenes in a local catalog, a new Resource can be implemented by extending an
interface called Catalog. The use of Resources prevents the platform from having to know the

Figure 1. Process graph example.

4 V. C. F. GOMES ET AL.

algorithms that will be used and expands the opportunities for use in different applications, only
observing that the specificities of each solution are integrated.

Currently, BDC-WE manages the following types of Resources:

. Provider: represents an external provider. It has functions for searching scene metadata in an
external catalog;

. Catalog: represents a catalog of metadata that can be managed by BDC-WE. It provides func-
tions for searching, adding, and removing scenes in a catalog;

. Processor: represents a processing function that can be applied to a scene or a set of scenes;

. Publisher: represents an external service to the platform. Provides functions for publishing (and
unpublishing) a scene or a set of scenes;

. Repository: represents a file system manager where data is retrieved or written. Provides func-
tions to manage the structure of directories where the data will be stored; and

. Features: represents a collection of vector data that can be used as input parameters to Processors.
Provides a catalog of vector data.

The Processing Repository represents the repository with functions and classes that implement
the available Processes and descriptions of Process Graphs available in the platform. Developers
can add new Processes to the list of built-in Processes available in BDC-WE. Workers are responsible
for executing Processes. The use of multiple Workers can increase the scalability of processing large
volumes of data.

The Workflow Orchestrator (WO) is responsible for managing the execution of Process Graphs
performed by Workers. It is responsible for loading the available Process Graphs and Process, check-
ing whether the input and output dependencies between the Process are compatible, receiving
execution requests from Workflow Orchestrator Interfaces or openEO Backend through BDC-WE
REST API, and managing the execution of the workflow on Workers.

Figure 2. BDC-WE architecture.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 5

BDC-WE REST API is a module responsible for managing access and identifying users who will
submit and monitor processing. For example, it is used to limit access to restricted data or the num-
ber of running processes by a User. The openEO Backend is responsible for providing a standardized
API so that external clients to the BDC-WE can interact with the platform using available libraries
or graphical interfaces, such as the openEO client (JavaScript, Python, and R) and the openEO Web
Editor. The openEO Backend is responsible for making Processes available in the BDC-WE instance
so that users can describe their Process Graphs using an openEO client. This backend also allows
Users to invoke the Process Graphs to run and download the produced data.

Workflow Orchestrator Interfaces (WOI) represents interfaces that allow interaction with WO,
allowing the configuration and execution of Process Graphs. They are mainly intended for Develo-
pers, as they require technical mastery of how BDC-WE works and provide more details about Pro-
cess Graphs and processing executions. WOI can be used for scheduling recurring processing. The
External Services represents the services used by the Resources in a BDC-WE instance, for instance
an STAC Provider or an OGC WMS. In addition to Resources, which represent the resources that
perform processing, BDC-WE provides a set of classes that represent processable elements. These
data models have the necessary attributes to be managed by WO and can be extended by Developers
to include other attributes or methods.

Figure 3 presents a class diagram supported by BDC-WE. The core element is Scene, which is
extended to LocalScene and RemoteScene. A LocalScene represents a Scene that has a list of Measure-
ments and methods to combine with other LocalScenes (merge) or to remove it (remove). A
Measurement has a path to a file and a MeasurementProperty. A MeasurementProperty has at

Figure 3. BDC-WE data abstraction model.

6 V. C. F. GOMES ET AL.

least two attributes: name and data type. A RemoteScene uses a method download that
implements a way to download files from a Scene to the repository. An IndexedScene extends
LocalScene by including a unique identifier for the Catalog in use. A Collection represents a set
of Scenes that share the same MeasurementProperties types. A Cube is defined as a set of Scenes.

3. BDC-WE: implementation

To implement the architecture described in Section 2, a set of technologies were chosen as a way to
accelerate the framework development process and to reuse open-source solutions that met the
needs of the BDC-WE. The Python language was used as a reference, since it is used for the
BDC Collection Builder and BDC Cube Builder and is also adopted by other platforms, such as
Open Data Cube, openEO, and Google Earth Engine (Gomes, Queiroz, and Ferreira 2020).

The core element of the framework is the Workflow Orchestrator. In the ecosystem of processing
data through workflows, there are a variety of open-source tools (Matskin et al. 2021), such as
Apache Airflow (The Apache Software Foundation 2022), Argo (Argo 2022),
Temporal (Temporal Technologies 2022), and Dagster (Elementl 2022).

Apache Airflow is a platform that allows the programmatic creation of workflows in Python and
the scheduling and monitoring of executions (Harenslak and Ruiter 2021). DAGs are defined
through the instantiation of Operators available on the platform. A DAG is created from the
dependency configuration between Operators. Argo, however, has a higher granularity for
tasks. This engine manages workflows in a Kubernetes environment, where each task is represented
by the execution of a container and a workflow is defined through a YAML file.

Temporal is a platform for orchestrating workflows written in Go, Java, PHP, Python, or Type-
Script codes. In Python, a DAG is represented by a class decorated with a decorator, @workflow.-
defn, and each task is represented by a method decorated with @activity.defn. Temporal is a
platform that is still under development and does not have full support for some languages. The
tool documentation is also under development (Temporal Technologies 2022).

Dagster is a platform for orchestrating workflows in Python. The elements that constitute the
processing workflow are defined using the decorators available in the dagster package. A
workflow task is a function decorated with the @op decorator, and a DAG is a function decorated
with @graph called a task function. By identifying the task calling sequence, Dagster creates a DAG
structure with data dependencies between the tasks. This structure is used during the orchestration
of workflow execution. In Dagster, a workflow can run locally in serial or parallel modes using
DASK, Celery, Docker, or Kubernetes. Triggering the execution of a DAG can be performed
through a WEB interface, GraphQL API, Python code, or by configuring Schedulers or Sensors.
Dagster also has the ability to export a DAG to run on Apache Airflow. Dagster provides a paid
service to run DAGs in a private cloud environment (Elementl 2022).

Dagster was chosen for use as a WO in the BDC-WE system, because it allows the dynamic gen-
eration of Process Graphs and provides a GraphQL API for the interaction between external appli-
cations and the orchestrator. This API is necessary for the interaction between the WO, WOI,
openEO Backend, and BDC-WE Rest API. In addition, Dagster has a web graphical interface that
allows an easy configuration and monitoring of the processes. It also has a variety of execution
modes that allows the execution of all the processing locally, in a single thread or in multiple
threads, or the distribution of the processing, using Celery, Dask, and/or Kubernetes technologies.
These features facilitate the debugging process and the transition between development and oper-
ational environments.

In Dagster, the central processing unit is called Ops, represented through functions with the @op
decorator. In this way, all Process developed for BDC-WE use this decorator with the respective
metadata to ensure compatibility verification of function input and output parameters. Process
Graphs in Dagster are called Graphs and are defined using functions decorated with @graph
and making calls to Ops functions.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 7

The dynamic generation and configuration of these elements can be achieved through the classes
available in the dagster package. Using this functionality, BDC-WE can create these elements
from a JGF (Json Graph Format) file that describes a Process Graph. The objective of this feature
is to facilitate the configuration and maintenance of the workflows managed by the BDC-WE.
These files follow a high-level format, without requiring technical knowledge about how Dagster
works. In Section 4, an example of the use of this functionality is presented.

BDC-WE-API was implemented through a REST service that intermediates requests from WO
and openEO Backend to WO. REST requests are converted to GraphQL requests, which interact
with the Dagster service. In the current phase of BDC-WE development, only access control via
username and password is performed by BDC-WE REST API. The control of the number of run-
ning processes and the limitation of the Process Graphs available for each User are not implemented
yet.

For the development of the openEO Backend, a template available in the repository (https://
github.com/Open-EO/openeo-python-driver) of the developers of the openEO standard was
used as a starting point. It implements the general REST request handling of the openEO API
and dispatches the work to a pluggable openEO backend driver. Thus, a driver was developed to
translate requests from openEO API requests into requests for WO. This driver uses the same
Resources used by Processors running on Workers. Resource Catalog, for example, is used
by developed driver to find available collections or find scenes to be delivered to users.

The openEO backend interacts with WO through the GraphQL API available in Dagster. For this,
a Python client, dagster_graphql_client, was developed (https://github.com/vconrado/
dagster_graphql_client). This client allows starting runs, tracking run status, retrieving results,
and reloading Process Graphs available for running. This last feature, together with the possibility
of generating new Process Graphs at runtime, provides great flexibility when creating new workfl-
ows. The implemented GraphQL client also has the possibility of controlling and managing
executions through command line.

The BDC-WE is still a prototype and the openEO Backend developed still does not support all
functions of the openEO standard. New functions are being incorporated according to the demand
of Developers who use BDC-WE in INPE’s internal projects.

A minimal working set of Resources is available in BDC-WE prototype. These built-in Resources
can be used in operational applications or serve as a reference for other implementations. The built-
in Resource stac_provider available in BDC-WE, for instance, extends the RemoteScene
class to create the StacRemoteScene class, which implements the downloading of scenes listed
in a STAC service. Developers can develop new Resources from the inheritance of base classes made
available in BDC-WE. Table 1 presents a list of Resources currently available in BDC-WE.

Table 1. Resources available in the BDC-WE.

Name Type Description

stac_provider Provider Performs queries in a STAC service.
odc_catalog Catalog Performs insert, remove, and search metadata operations in an Open Data Cube

catalog.
crop_scene_proc Processor Crops a Scene using GDAL.
reduce_time_proc Processor Performs time reduction operations (max, min, mean, median) on a cube.
download_proc Processor Download a remote scene via HTTP.
geoserver_pub Publisher Publishes a scene to an ImageMosaic Store on a Geoserver server.
ssh_pub Publisher Run a previously configured ssh command.
discord_pub Publisher Sends a message to a Discord channel.
slack_pub Publisher Send a message to a Slack channel.
file_system_repo Repository Performs the creation of folders in the file system using the metadata of the scenes.
protected_file_system_repo Repository Performs the creation of folders in the file system, blocking the other folders for

read-only.
gdal_features Features Loads and serves vector data in formats supported by GDAL.

8 V. C. F. GOMES ET AL.

https://github.com/Open-EO/openeo-python-driver
https://github.com/Open-EO/openeo-python-driver
https://github.com/vconrado/dagster_graphql_client
https://github.com/vconrado/dagster_graphql_client

In addition to Resources and data models, BDC-WE prototype also provides a set of previously
implemented Processes that can be used by Developers to build Process Graphs. With the currently
available Processes, we believe that a large number of EO data processing applications demanded by
INPE projects can be modeled because these Processes represent meta-tasks and that the code to be
executed basically depends on the Resources used.

The Processes available in the framework are grouped into 4 types:

. Discovery: Processes that allow discovery of the resources to be processed. The discovery can be
performed in external services (Provider Resource) or in the catalog managed by BDC-WE (Cat-
alog Resource). Discovery functions in Providers produce RemoteScenes while discovery
functions in Catalogs produce IndexedScenes;

. Processing: Processes that call a processing function (Processor Resource) which must receive a
LocalScene or a LocalCube and will produce, respectively, a new LocalScene or a
new LocalCube;

. Indexing: Process that registers a LocalScene or LocalCube in the catalog managed by the
BDC-WE (Catalog Resource). The indexing process takes a LocalScene or LocalCube
and produces, respectively, an IndexedScene or a IndexedCube;

. Publishing: Process which notifies an external service (Publisher Resource) about the creation or
removal of a scene or set of Scenes. A Publisher receives a set of IndexedScene or an Indexed-
Cube and must return an object of the same type received.

Table 2 presents the Processes currently available in the BDC-WE prototype. In this Table, the
first column presents the name of the Process, the second the type, and the third the Resources

Table 2. Processes available in the BDC-WE.

Name Type Resources Input Output Parameters

discovery_external Discovery Provider – List
[RemoteScene]

bbox, start_date,
end_date, collection,
ignore_assets, limit,

offset
discovery_external_by_feature Discovery Provider,

Features
– List

[RemoteScene]
feature_id, start_date,
end_date, collection,
ignore_assets, limit,

offset
discovery_not_processed Discovery Catalog – List

[IndexedScene]
product, process_name,

bbox, limit, offset
discovery_by_id Discovery Catalog – IndexedScene id
discovery_cube Discovery Catalog – List

[IndexedScene]
product, bbox, start_date,

end_date
index_scene Indexing Catalog,

Repository
LocalScene IndexedScene product, asset_keys

index_cube Indexing Catalog,
Repository

LocalCube IndexedCube product, asset_keys

apply_scene Processing List
[Processor],
Repository

LocalScene LocalScene process_name, subpath,
override, args

seq_apply_scene Processing List
[Processor],
Repository

LocalScene LocalScene process_name, subpath,
override,

remove_partials, args
apply_cube Processing List

[Processor],
Repository

LocalCube LocalScube process_name, subpath,
override, args

publish_scenes Publishing List
[Publisher],
Repository

List
[IndexedScene]

List
[IndexedScene]

product, asset_keys

publish_cube Publishing List
[Publisher],
Repository

IndexedCube IndexedCube product, asset_keys

INTERNATIONAL JOURNAL OF DIGITAL EARTH 9

used. The fourth and fifth columns present the types of object expected as the input and output by
Resource, respectively. The last column of this table presents the parameters expected from
Processor.

If necessary, Developers can implement new Processes and make them available to the platform
through a configuration file. The Processes defined by Developers and those currently available in
BDC-WE are loaded dynamically using the Python library importlib. Developers can use the
same strategy to implement Processor Resources that receive as an argument the definition
of a function that can be dynamically loaded during the execution of the Process. This approach is
especially useful for implementing the User-Defined Functions (UDF) support specified by
openEO.

Using the Processes and Resources available in BDC-WE, the Process Graph illustrated in Figure 1
can be configured according to the diagram presented in Figure 4. In this example, a STAC provider
is being used as an external RemoteScenes provider, the Processor download_proc will be applied
to each RemoteScene found, the odc_catalog Catalog will be used to index the LocalScenes and
finally, the IndexedScenes will be published on a Geoserver server, using the Publisher geoser-
ver_pub. Although this Process Graph illustrates a flow as if only a single RemoteScene was
found in the first Process, BDC-WE allows the description of Process Graphs that execute, for
example, the Process apply_scene (download_proc) in parallel for each RemoteScene
returned by Process discovery_external (stac_provider). More details regarding the
process description of Process Graphs are presented in Section 4.

3.1. BDC-WE boilerplate project

The architecture of the BDC-WE prototype with the chosen technologies is shown in Figure 5. To
facilitate the process of deploying a BDC-WE instance, a preconfigured template project was devel-
oped to run BDC-WE with an Open Data Cube (ODC) catalog. This project has a basic example of

Figure 4. Process graph example with resources configuration.

Figure 5. BDC-WE prototype architecture with the chosen technologies.

10 V. C. F. GOMES ET AL.

processing and a set of pre-configured services. To facilitate the deployment process, each service
runs in a Docker container. These services have been grouped into four docker-compose files to
facilitate the service management.

The main file, docker-compose.yml, has the minimum number of services for running
BDC-WE: a PostgreSQL database, a RabbitMQ messaging service, and Dagster. The worker is
configured in a separate file, docker-compose .worker.yml, to easily run on multiple ser-
vers. The third file is docker-compose.odc.yml, configures the following external services:
datacube-explorer (STAC); Geoserver (WMS, WFS, WCS), nginx (as a file server); and a container
with scripts to initialize the database and load the collections into the ODC base. The docker-
compose.openeo.yml file configures the openEO backend and the openEO Web editor.

Using this complete project, it is possible to start a BDC-WE instance ready to work. Developers
can also customize this template project to meet the specific needs of an application.

4. Case study

To evaluate the prototype of the BDC-WE, two case studies were conducted. The first case study,
presented in Section 4.1, deals with the operationalization of the production of water quality indices
of the MAPAQUALI project. The second, presented in Section 4.2, evaluates the use of BDC-WE
implementation for land use and land cover classification using the SITS R package (Simoes
et al. 2021). The second case study is useful to illustrate the use of the prototype with an application
written in a language other than Python.

The BDC-WE boilerplate project was used as the starting point in both case studies. The Figure 5
illustrates the technologies and services used in both case studies. The ODC Catalog Database is a
PostgreSQL instance configured with the schema used by ODC. The STAC service used by Workers
is the publicly available BDC (Ferreira et al. 2020) instance. The ODC Explorer and Geoserver ser-
vices were used for data dissemination using the STAC and OGC WMS standards.

4.1. Water quality indices from EO data

This case study was developed to validate the BDC-WE prototype in an operational environment
and verify its applicability for producing EO data products. The MAPAQUALI project was selected
for this case study. This project, being carried out at INPE’s Aquatic Systems Instrumentation Lab-
oratory (LabISA), has, among its objectives, the generation and availability of time series of the
spatial distribution of water quality parameters (Lima et al. 2023; Lobo et al. 2021; Maciel
et al. 2019, 2020, 2021): Chlorophyll-a, Cyanobacteria, Total Suspended Solids, Dissolved Colored
Organic Matter (CDOM), an underwater light field through the diffuse attenuation coefficient (Kd),
and alerts of bloom events (especially cyanobacteria). The MAPAQUALI project also demands that
these water quality parameters be customized for new aquatic systems added to the
system (LabISA 2022).

The MAPAQUALI project demands that a set of algorithms can be parameterized to generate
and make available products for different areas of interest. To produce ARD, MAPAQUALI uses
third-party scripts and algorithms written in Python produced by the project team. MAPAQUALI
researchers also used this language to write scripts responsible for generating water quality par-
ameter products. Most of these scripts receive the paths of the bands of a scene, the algorithm
configuration parameters, and the path(s) of the file(s) of the product(s) that will be calculated
as input parameters.

Figure 6 show the general data flow of the products calculated using the MAPAQUALI platform.
The blue rectangles represent the data used or produced, whereas the gray rectangles illustrate the
processing tasks performed.

From the collection of raw data (Landsat-8 OLI and Sentinel 2 L1C TOA) in an External Provi-
der, a sequence of algorithms is applied to produce analysis-ready data (MAPAQUALI-ARD) used

INTERNATIONAL JOURNAL OF DIGITAL EARTH 11

as input for other water quality indicators algorithms. The second stage deals with the mapping of
MAPAQUALI-ARD for the project’s regions of interest (ROI). In the case of MAPAQUALI, these
ROI were lakes, water reservoirs, and other aquatic systems. Finally, in the third step, the clipped
ARDs were used as inputs to water quality indicator models developed by the LabISA research
group. The same function that produces a water quality product can be used for different ROIs
or be exclusive to a single ROI.

The STAC and OGC WMS services were chosen to disseminate data produced by the MAPA-
QUALI platform. The WMS is used to view the data on the web portal of the MAPAQUALI
platform, whereas the STAC allows users to consult the catalog and download the products gen-
erated by the platform. As a metadata catalog, the Open Data Cube was chosen, since this frame-
work meets the needs of the project and also provides the application datacube-explorer, which
provides a STAC implementation and a visual interface for navigating between indexed collec-
tions in the catalog. For the WMS service, Geoserver (OSGeo 2022) was chosen, due to the pre-
vious experience of the MAPAQUALI team in the use and configuration of this server and the
availability of a resource Publisher for Geoserver implemented by BDC-WE. In addition to pub-
lishing data in the WMS service, it was decided to publish messages in the Discord communi-
cation application. Thus, the MAPAQUALI team can monitor the generation of products more
easily.

Briefly, the Resources selected for use in the case study of the MAPAQUALI project were: (i) stac
(Provider); (ii) odc (Catalog); (iii) GDAL-Features (Features); and (iv) odc-stac and discord (Pub-
lishers). Wrapper functions were created as Processors for each legacy function previously devel-
oped by the MAPAQUALI team. The wrapper functions are responsible for receiving the

Figure 6. MAPAQUALI products generation dataflow.

12 V. C. F. GOMES ET AL.

parameters in the format used by BDC-WE and passing them on to the legacy functions in the for-
mat they expect. Listing 1 presents an example of the recurring structure of wrapper functions used.

Processing Graphs (PG) were created from the identified data flow to perform processing. To
facilitate reading, the PG will be presented, indicating the process used and resource(s) used in par-
entheses. For example, index_scene (Catalog: odc) indicates the use of the process index_scene
configured with the Open Data Cube catalog. Arrows indicate the direction of data flow.

Listing 1. Wrapper function example.

def processor_a(in_scene: Scene, dest: Path, resources: dict, **kwargs) ->
LocalScene:
f = Path(dest, "prod_a.TIF")
call MAPAQUALI processing function
function_a(f, in_scene.measurement("B01").path, kwargs["nodata"])
return LocalScene (measurements=[Measurement (path=f, properties=

MeasurementProperties(name="prod_a", data_type=DataType.float32))])

The PGs used in the case study of the MAPAQUALI platform are:

. Collect Scenes: discovery_external (Provider: stac) → apply_scene (Processor:
download) → index_scene (Catalog: odc) → publish (Publishers: stac, geoserver,
discord);

. ARD: discovery_by_id (Provider: odc) → mq_scene (Processor: download) →
index_scene (Catalog: odc) → publish (Publishers: stac, geoserver, discord);

. ARD ROI: discovery_by_id (Provider: odc) → crop (Processor: crop, Features: GDAL-
features) → index_scene (Catalog: odc) → publish (Publishers: stac, geoserver, discord);
e

. Product A: discovery_by_id (Provider: odc) → apply_scene (Processor: processor_a)
→ index_scene (Catalog: odc) → publish (Publishers: stac, geoserver, discord); e

The Processes used are those listed in Table 2, while the Resources are those listed in Table 1.
Processor mq_ard is a wrapper function that calls third-party scripts and MAPAQUALI functions
to produce ARD data. Process Graph Product A represents the template used to generate the differ-
ent products from the MAPAQUALI platform, while processor_a refers to a wrapper function
that, for example, calls a function that calculates one of the indices of water quality developed by the
project’s researchers.

Listing 2 shows how the description of PG Product A is performed through a JSON file using the
specification of the standard JSON Graph Format (Bargnesi et al. 2022).

Listing 2. Example of Process Graph description.

{"graph": {
"id": "process_a",
"label": "Produce the water quality index A",
"nodes": {
"discovery_by_id": {
"metadata": {
"type": "discovery_by_id",

"resources": {"provider": "odc"}}},
"apply_scene": {
"metadata": {
"type": "apply_scene",
"resources": {"processors": ["process_a"]}}},

"index_scene": {
"metadata": {
"type": "index_scene",
"resources": {"catalog": "odc"}}},

"publish": {
"metadata": {
"type": "publish",

INTERNATIONAL JOURNAL OF DIGITAL EARTH 13

"resources": {"publishers": ["stac","geoserver", "discord"]}}}
},
"edges": [
{ "source": "discovery_by_id",
"target": "apply_scene",
"relation": "map"},

{ "source": "apply_scene",
"target": "index_scene",
"relation": "map"},

{ "source": "index_scene",
"target": "publish",
"relation": "collect"}

]}
}

Initially, each node of PG is defined. The type attribute indicates the Processor to be invoked.
Optionally, it is possible to define the resources that are used by the Processor. The dependencies
between nodes are defined in the edges attribute of the graph. For each dependency, the origin
and destination of the data and the type of relation (map or collect) were provided. The
Resources used in a PG must be previously defined in a configuration file for BDC-WE to manage
these artifacts.

Listing 3 illustrates the configuration of Process process_a, which does not demand any other
Resources and will receive, in addition to the process interface parameters defined by BDC-WE, the
argument nodata. These arguments are useful so that processing function parameters can be
configured without being previously defined in wrapper functions.

Listing 3. Processors config example.

{
"processors": {
"process_a": {
"path": "/path/to/wrappers.py",
"function": "process_a",
"resources": [],
"args": { "nodata": 0.0 }

}
…

}
}

The configuration of data dependencies was performed using the deps attribute. Dependency
map:discovery_by_id indicates that apply_scene is mapped (map) to each scene pro-
duced by discovery_by_id. On the other hand, the collect:index_scene dependency
indicates that all scenes produced by index_scene are grouped into a list (collect) and then
passed on to Process publish. When only one scene is produced by each Process, the processing
flow is performed sequentially. On the other hand, if a Process produces a set of scenes, the next
process can be performed in parallel. The concurrent execution of the Processes is managed by
the WO. For example, running PG Collect Scenes that found two new scenes on the External Pro-
vider is illustrated by the diagram in Figure 7. The dependency of type map was used to map the
multiple results of discover_external for each execution of apply_scene. The depen-
dency of type collect performs grouping of results before invoking Process publish. The
map type dependency can also be used between a Process that produces only one scene and one
that consumes only one scene.

Schedulers are used for recurring execution of PGs. In the case of MAPAQUALI project, this
feature is used for PGs of the Collect Scene type, which searches for new scenes from external pro-
viders daily.

For the initialization of the other PGs, the Sensor resource was used. This functionality is used in
the following situations:

14 V. C. F. GOMES ET AL.

. PG ARD begins when a new scene is downloaded by PG Collect Scenes.

. PG ARD ROI when a new scene is produced by PG ARD; and

. PGs of type Product A begin when a new scene is produced by the PG ARD ROI.

The PGs used in this instance of MAPAQUALI’s BDC-WE were also available for execution
through the openEO interface. In this manner, researchers can execute algorithms with different
parameters to carry out tests. The generated products can be downloaded to the researcher’s desk-
top using openEO’s API. These products are saved in a staging repository separate from the main
repository. Likewise, the metadata of these products generated by researchers via the openEO API
are not indexed in MAPAQUALI’s main catalogue. This choice was motivated to avoid contami-
nation of research data with products made available to the public. Figure 8 shows the openEO
Web Editor interface for the BDC-WE MAPAQUALI instance.

4.2. Land use and land cover classification

In the BDC project, the R package SITS is used to produce land use and land cover maps from image
time series extracted from EO data cubes using machine and deep learning methods (Simoes
et al. 2021). The task of generating these maps is often divided into two phases: (1) training the
machine and deep learning methods; and (2) classification using the model produced in the phase
1. In the training phase, labeled samples of a region of interest (ROI) are used to calibrate the predic-
tive model. With this model, the scenes of this ROI, modeled as EO data cubes, are then classified.

Figure 7. Process graph collect scenes diagram.

Figure 8. openEO Web Editor of the BDC-WE prototype in the MAPAQUALI case study.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 15

For this case study, a Process Graph was created to classify the EO data cube, considering the
existence of a previously calibrated predictive model. This classification phase consists in the follow-
ing function invocation sequence of the SITS package:

(1) sits_cube: performs the query on the BDC STAC and defines one of a data cube for the
region of interest;

(2) sits_classify: performs scene classification using a predictive model and the data cube
produced in the previous step;

(3) sits_smooth: performs the smoothing of the classification performed in the previous step;
and

(4) sits_label_classification: from the scene probability values, it converts to a label
based on the highest probability of each pixel.

This algorithm was divided into two phases to run on BDC-WE, considering a PG type Discovery
→ Process → Index → Publish. In the search phase, a new Provider, SitsProvider, was
implemented. SitsProvider’s search method invokes the sits_cube function and produces a list of
scenes to be processed. For this, a script was created in the R language, which receives the necessary
parameters and invokes the sits_cube function. The data cube definition resulting from this
function is then spatially split to define the smaller data cubes. This subdivision is performed by
considering the grid used by the BDC for the collection. The purpose of this split was to make it
easier to parallelize the sort run on each data cube. The data structure in R, representing the meta-
data of these smaller data cubes, was saved in .rda format. The search method of SitsProvider
returns a list of objects of type SitsRemoteScene (which extends the RemoteScene class). Each of these
objects has among its attributes the path to one of the data cubes generated by the script in R. This
approach was used to represent an object produced in Python and processed in the R language.

The objects produced in the previous phase (discovery) were passed to a classified pro-
cessor. This function follows the structure presented in listing 1, and calls a script in R called
classify.R, which receives as input parameter the path of the predictive model and file .rda of
the data cube. This script is responsible for performing classification, smoothing, and labeling
of the pixels of each data cube. In addition, it returned the path of the sorted file. This path is
for the processor to classify and create the scene object, which is returned to the Process Graph.

The classified scenes were then indexed into a STAC catalog and published to an OGC WMS
service (Geoserver). Figure 9 illustrates the Process Graph used in the case study and Figure 10
shows the results of the classification performed in this study.

5. Final remarks and discussion

This paper presents the architecture of a system called BDC-WE, based on workflows for big EO
data processing. This architecture allows the inclusion of new algorithms and provides a high-
level interface for users, using the openEO API. These characteristics meet the needs and alternative
solutions presented by Gomes, Queiroz, and Ferreira (2020). The main contributions of the pro-
posed BDC-WE tool are: (1) the abstraction of EO data retrieval, processing, cataloging, and dis-
semination resources; (2) the definition of an interface to implement these resources; and (3) the

Figure 9. Process graph diagram for image classification with SITS.

16 V. C. F. GOMES ET AL.

ability to dynamically load these resources into processing workflows. The presented solution
reduces the level of complexity required to Experts to include new processing functions in a proces-
sing tool for large EO datasets. Furthermore, decoupling the access API from the processing func-
tionalities allows other APIs to be integrated into the proposed architecture. To validate the
proposed architecture, a prototype was developed and evaluated using two case studies.

The first case study showed us that the use of Process to represent meta-tasks made the process of
creating PGs easier with algorithms previously developed by the MAPAQUALI project team.
Through wrapper functions and the configuration of a PG with four Process (Discovery, Process,
Index, and Publish), it was possible to produce most of the products of this project. Dagster’s sche-
duling functionality was useful, allowing new scenes to be found daily from providers and processed
by the configured PG. Currently, the MAPAQUALI project is using an exclusive instance of the
BDC-WE prototype to produce water quality indices.

In the second use case, we observed that the decomposition of the algorithm for image classifi-
cation into subtasks and the description through a PG facilitates the processing of massive data sets
to produce land use and land cover maps using the SITS R package. The openEO API of the BDC-
WE is used by users and developers to select a region of interest and to provide a file with a model
previously trained by SITS. Then, BDC-WE executes the image classification PG distributing the
Process to all available Workers.

These two case studies show us that the BDC-WE allowed applications, which were initially
implemented to be executed sequentially or in parallel on a single machine, to easily gain processing
scale. This is possible because of the description of these applications in Processes, which can be
orchestrated by the BDC-WE. In this manner, once the application is modeled in the form of
PG, new computational resources can be accommodated in the cluster to allow a gain in the pro-
cessing scale, without the need for any change in PG.

The integration of openEO with WO through requests to the GraphQL API proved to be efficient
because it is possible to access all the resources available in Dagster. This separation between WO

Figure 10. Land use and land cover map of the western region of the Cerrado biome produced using the SITS R package running
on the BDC-WE prototype.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 17

and the module responsible for processing requests allows, for example, new APIs, such as OGC
WPS and WCPS (Aiordăchioaie and Baumann 2010), to be integrated or developed in the future
without the need to change the way processing is carried out. The proposed architecture uses
openEO as a way of exposing processing services to clients and does not intend to evaluate or com-
pare its functions using other standards such as OGC WPS and WCPS. The architecture is struc-
tured in such a way as to allow other APIs to be able to be integrated into the processing solution.
The advantage of using openEO as a high-level interface for BDC-WE is the availability of tools,
such as the openEO Web Editor and clients in three different programming languages, and the
possibility of future integration with other EO data processing platforms using this API.

Using a development-ready openEO Backend framework accelerated the integration of this API
into BDC-WE. In particular, to make collections available, calls were made to methods already
implemented by a Resource of type Catalog. However, the implementation of the entire set of oper-
ators available in this API requires considerable effort. Version 1.0 of the openEO API specifies 241
predefined processes. These predefined processes do not necessarily need to be implemented on all
back-ends, requiring applications to perform queries (listProcesses) to check their
availability (openEO 2023). For the integration of openEO with the BDC-WE prototype, the
main goal was to validate the proposed architecture. Thus, the main operators crucial to the
study cases were chosen for implementation, such as cross-band operation, time reduction
(mean, maximum, minimum, and standard deviation), and invocation of predefined PGs specific
to each use case. The inclusion of new openEO predefined processes in BDC-WE requires the
implementation of a new Process that performs this function and the inclusion in the openEO Back-
end of the invocation of a PG configured to execute the respective Process.

By adopting openEO API as the interface for the submission and control of processes by the
users, the data produced in the BDC-WE tool is closer to being compatible with FAIR principles.
Through the use of the STAC service, openEO provides a domain-relevant community standard
that can provide rich metadata and provenance of available EO data.

The results presented in this work show the potential of the architecture proposed and of the
prototype. For future work, we intend to advance in the individualized management of the use
of computational resources, reproducibility, and code sharing. Regarding the management of the
use of computational resources, openEO API defines endpoints for billing management, such as
checking the credit available to the user, cost estimate for operations, and information on the
costs of operations performed. However, this API does not define how these operations should
be performed. In the BDC-WE architecture, the BDC-WE REST-API module that mediates all pro-
cessing requests is responsible for these activities. A possible solution for this issue is the use of an
approach inspired by the solution adopted by GEE, which limits the amount of RAM and CPU
memory per processing. In the case of BDC-WE, the expectation is to limit the use of RAM by Pro-
cess and use CPU time as a metric to be discounted from users’ credits. The limits of memory and
CPU used by a Process can be established in the execution of Docker containers and technology
currently in use by BDC-WE.

Regarding code sharing, although the use of the openEO API facilitates this process in BDC-WE,
it is still up to the researchers to manage the exchange of files among their peers. The ability to share
the analyzes is the first step in the path to reproducibility (Ivie and Thain 2018). Carlos (2023)’s
work presents a tool to assist in the process of managing research artifacts to ensure reproducible
sharing, and should be considered as an important source of inspiration for including this capability
in the BDC-WE.

In addition to these works, we intend to move forward with the implementation of BDC-WE
through the implementation of all operators available in the openEO API, and automate the loading
and availability of PGs through configuration files. As the implementation of this tool advances, our
goal is to make BDC-WE the central tool for carrying out processing on the BDC platform, being
responsible for both processing user analyzes and executing platform-specific applications, such as
the BDC Collection Builder and BDC Cube Builder.

18 V. C. F. GOMES ET AL.

Disclosure statement
The authors report there are no competing interests to declare.

Funding
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil
(CAPES) – Finance Code and by the Environmental Monitoring of Brazilian Biomes project (Brazil Data Cube),
funded by the Amazon Fund through the financial collaboration of the Brazilian Development Bank (BNDES)
and the Foundation for Science, Technology and Space Applications (FUNCATE), Process 17.2.0536.1 (ARS, AS,
MP).

Data availability statement
The data that support the findings of this study are available from the corresponding author, VCFG, upon reasonable
request.

References
Aiordăchioaie, Andrei, and Peter Baumann. 2010. “PetaScope: An Open-Source Implementation of the OGC WCS

Geo Service Standards Suite.” In Scientific and Statistical Database Management, edited by Michael Gertz and
Bertram Ludäscher, 160–168. Berlin, Heidelberg: Springer Berlin Heidelberg.

The Apache Software Foundation. July, 2022. “Apache Airflow.” Accessed July 20, 2022. https://airflow.apache.org/.
Argo. July, 2022. “Argo Project.” Accessed July 20, 2022. https://argoproj.github.io/.
Bargnesi, Anthony, Anselmo DiFabio, William Hayes, Georgiy Shibaev, Cristophe Benz, Hugh Pyle, Erik Dao, and

Travis Giggy. July, 2022. “JSON Graph Format (JGF).” Accessed July 20, 2022. https://jsongraphformat.info/.
Brown, Molly E.. 2016. “Remote Sensing Technology and Land Use Analysis in Food Security Assessment.” Journal of

Land Use Science 11 (6): 623–641. https://doi.org/10.1080/1747423X.2016.1195455.
Camara, Gilberto, Luiz Fernando Assis, Gilberto Ribeiro, Karine Reis Ferreira, Eduardo Llapa, and Lubia Vinhas.

2016. “Big Earth Observation Data Analytics: Matching Requirements to System Architectures.” In Proceedings
of the 5th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, 6. ACM.New
York, NY, USA

Carlos, Felipe Menino. May, 2023. “Storm: Platform to Support The Development of Reproducible and Collaborative
Geospatial Applications.” Accessed May 15, 2023. http://mtc-m21d.sid.inpe.br/col/sid.inpe.br/mtc-m21d/2023/
01.04.23.36/doc/publicacao.pdf.

de Lima, Thainara Munhoz Alexandre, Claudia Giardino, Mariano Bresciani, Claudio Clemente Faria Barbosa, Alice
Fabbretto, Andrea Pellegrino, and Felipe Nincao Begliomini. 2023. “Assessment of Estimated Phycocyanin and
Chlorophyll-a Concentration From PRISMA and OLCI in Brazilian Inland Waters: A Comparison Between
Semi-Analytical and Machine Learning Algorithms.” Remote Sensing15 (5): 1299. https://doi.org/10.3390/
rs15051299.

Ekim, Burak, and Elif Sertel. 2021. “Deep Neural Network Ensembles for Remote Sensing Land Cover and Land Use
Classification.” International Journal of Digital Earth 14 (12): 1868–1881. https://doi.org/10.1080/17538947.2021.
1980125.

Elementl. July, 2022. “Dagster – Cloud-Native Orchestration of Data Pipelines.” Accessed July 20, 2022. https://dagster.io/.
FAO. May, 2023. “SEPAL Repository.” Accessed May 7, 2023. https://github.com/openforis/sepal/.
Ferreira, K. R., G. R. Queiroz, R. F. B. Marujo, and R. W. Costa. 2022. “Building Earth Observation Data Cubes on

AWS.” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesXLIII-
B3-2022:597–602. https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-597-2022.

Ferreira, Karine R., Gilberto R. Queiroz, Lubia Vinhas, Rennan F. B. Marujo, Rolf E. O. Simoes, Michelle C. A. Picoli,
Gilberto Camara, et al. 2020. “Earth Observation Data Cubes for Brazil: Requirements, Methodology and
Products.” Remote Sensing 12 (24): 4033. https://doi.org/10.3390/rs12244033.

Giuliani, Gregory, Paolo Mazzetti, Mattia Santoro, Stefano Nativi, Joost Van Bemmelen, Guido Colangeli, and
Anthony Lehmann. 2020. “Knowledge Generation Using Satellite Earth Observations to Support Sustainable
Development Goals (SDG): A Use Case on Land Degradation.” International Journal of Applied Earth
Observation 88:102068. https://doi.org/10.1016/j.jag.2020.102068.

Gomes, Vitor C. F., Felipe M. Carlos, Gilberto R. Queiroz, Karine R. Ferreira, and Rafael Santos. 2021. “Accessing and
Processing Brazilian Earth Observation Data Cubes with the Open Data Cube Platform.” ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information SciencesV-4-2021 (4): 153–159. https://doi.org/10.
5194/isprs-annals-V-4-2021-153-2021.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 19

https://airflow.apache.org/
https://argoproj.github.io/
https://jsongraphformat.info/
https://doi.org/10.1080/1747423X.2016.1195455
http://mtc-m21d.sid.inpe.br/col/sid.inpe.br/mtc-m21d/2023/01.04.23.36/doc/publicacao.pdf
http://mtc-m21d.sid.inpe.br/col/sid.inpe.br/mtc-m21d/2023/01.04.23.36/doc/publicacao.pdf
https://doi.org/10.3390/rs15051299
https://doi.org/10.3390/rs15051299
https://doi.org/10.1080/17538947.2021.1980125
https://doi.org/10.1080/17538947.2021.1980125
https://dagster.io/
https://github.com/openforis/sepal/
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-597-2022
https://doi.org/10.3390/rs12244033
https://doi.org/10.1016/j.jag.2020.102068
https://doi.org/10.5194/isprs-annals-V-4-2021-153-2021
https://doi.org/10.5194/isprs-annals-V-4-2021-153-2021

Gomes, Vitor C. F., Gilberto R. Queiroz, and Karine R. Ferreira. 2020. “An Overview of Platforms for Big Earth
Observation Data Management and Analysis.” Remote Sensing 12 (8): 1253. https://doi.org/10.3390/rs12081253.

Gorelick, Noel, Matt Hancher, Mike Dixon, Simon Ilyushchenko, David Thau, and Rebecca Moore. 2017. “Google
Earth Engine: Planetary-scale Geospatial Analysis for Everyone.” Remote Sensing of Environment 202 (2016): 18–
27. http://dx.doi.org/10.1016/j.rse.2017.06.031.

Harenslak, Bas P., and Julian de Ruiter. 2021. Data Pipelines with Apache Airflow. Shelter Island, New York, USA:
Manning.

Ivie, Peter, and Douglas Thain. 2018. “Reproducibility in Scientific Computing.” ACM Computing Surveys (CSUR) 51
(3): 36.

Kamali Maskooni, Ehsan, Hossein Hashemi, Ronny Berndtsson, Peyman Daneshkar Arasteh, and Mohammad
Kazemi. 2021. “Impact of Spatiotemporal Land-use and Land-cover Changes on Surface Urban Heat Islands in
a Semiarid Region Using Landsat Data.” International Journal of Digital Earth14 (2): 250–270. https://doi.org/
10.1080/17538947.2020.1813210.

Killough, Brian. 2018. “Overview of the Open Data Cube Initiative.” In IGARSS 2018 – 2018 IEEE International
Geoscience and Remote Sensing Symposium, 8629–8632.Valencia, Spain

Killough, Brian, Syed Rizvi, and Andrew Lubawy. 2021. “Advancements in the Open Data Cube and the Use of
Analysis Ready Data in the Cloud.” In 2021 IEEE International Geoscience and Remote Sensing Symposium
IGARSS, 1793–1795. IEEE.

LabISA. July, 2022. “Mapaquali.” Accessed July 20, 2022. http://www.dpi.inpe.br/labisa/project/mapaquali/.
Lobo, Felipe de Lucia, Gustavo Willy Nagel, Daniel Andrade Maciel, Lino Augusto Sander de Carvalho, Vitor Souza

Martins, Cláudio Clemente Faria Barbosa, and Evlyn Márcia Leão de Moraes Novo. 2021. “AlgaeMAp: Algae
Bloom Monitoring Application for Inland Waters in Latin America.” Remote Sensing 13 (15): 2874. https://doi.
org/10.3390/rs13152874.

Maciel, Daniel Andrade, Claudio Clemente Faria Barbosa, Evlyn Márcia Leão de Moraes Novo, Nagur Cherukuru,
Vitor Souza Martins, Rogério Flores Júnior, Daniel Schaffer Jorge, Lino Augusto Sander de Carvalho, and Felipe
Menino Carlos. 2020. “Mapping of Diffuse Attenuation Coefficient in Optically Complex Waters of Amazon
Floodplain Lakes.” ISPRS Journal of Photogrammetry and Remote Sensing 170:72–87. https://doi.org/10.1016/j.
isprsjprs.2020.10.009.

Maciel, Daniel Andrade, Claudio Clemente Faria Barbosa, Evlyn Márcia Leão de Moraes Novo, Rogério Flores
Júnior, and Felipe Nincao Begliomini. 2021. “Water Clarity in Brazilian Water Assessed Using Sentinel-2 and
Machine Learning Methods.” ISPRS Journal of Photogrammetry and Remote Sensing 182:134–152. https://doi.
org/10.1016/j.isprsjprs.2021.10.009.

Maciel, Daniel, Evlyn Novo, Lino Sander de Carvalho, Cláudio Barbosa, Rogério Flores Júnior, and Felipe de Lucia
Lobo. 2019. “Retrieving Total and Inorganic Suspended Sediments in Amazon Floodplain Lakes: A Multisensor
Approach.” Remote Sensing 11 (15): 1744. https://doi.org/10.3390/rs11151744.

Marujo, Rennan F. B., Karine R. Ferreira, Gilberto R. Queiroz, Raphael W. Costa, Jeferson S. Arcanjo, and Ricardo C.
M. Souza. 2022. “Generating Analysis Ready Data Collections for Brazil.” In IGARSS 2022 – 2022 IEEE
International Geoscience and Remote Sensing Symposium, 6844–6847.Kuala Lumpur, Malaysia

Masser, Ian. 2019. “The Future of Spatial Data Infrastructures.” In Geographic Information Systems to Spatial Data
Infrastructure, 227–252. CRC Press.Boca Raton, Florida

Matskin, Mihhail, Shirin Tahmasebi, Amirhossein Layegh, Amir H. Payberah, Aleena Thomas, Nikolay Nikolov, and
Dumitru Roman. 2021. “A Survey of Big Data Pipeline Orchestration Tools From The Perspective of The
Datacloud Project.” In Proceedings of the 23rd International Conference Data Analytics Management Data
Intensive Domains (DAMDID/RCDL 2021), 63–78.Moscow, Russia

Milcinski, Grega, and Primoz Kolaric. 2023. “Sentinel Hub-Federated On-Demand ARD Generation.” In EGU
General Assembly 2023, 4160.Vienna, Austria

Müller, Matthias. 2016. “Service-Oriented Geoprocessing in Spatial Data Infrastructures.” PhD diss., Technische
Universität Dresden.

Müller, Matthias, Lars Bernard, and Johannes Brauner. 2010. “Moving Code in Spatial Data Infrastructures – Web
Service Based Deployment of Geoprocessing Algorithms.” Transactions in GIS14 (SUPPL. 1): 101–118. https://doi.
org/10.1111/tgis.2010.14.issue-s1.

openEO. November, 2023. “openEO Processes (1.0).” Accessed November 5, 2023. https://openeo.org/
documentation/1.0/processes.html.

OSGeo, S.. July, 2022. “Geoserver.” Accessed July 20, 2022. https://geoserver.org/.
Schramm, Matthias, Edzer Pebesma, Milutin Milenković, Luca Foresta, Jeroen Dries, Alexander Jacob, Wolfgang

Wagner, et al. 2021. “The OpenEO API–Harmonising the Use of Earth Observation Cloud Services Using
Virtual Data Cube Functionalities.” Remote Sensing 13 (6): 1125. https://doi.org/10.3390/rs13061125.

Simoes, Rolf, Gilberto Camara, Gilberto Queiroz, Felipe Souza, Pedro R. Andrade, Lorena Santos, Alexandre
Carvalho, and Karine Ferreira. 2021. “Satellite Image Time Series Analysis for Big Earth Observation Data.”
Remote Sensing 13 (13): 2428. https://doi.org/10.3390/rs13132428.

20 V. C. F. GOMES ET AL.

https://doi.org/10.3390/rs12081253
http://dx.doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1080/17538947.2020.1813210
https://doi.org/10.1080/17538947.2020.1813210
http://www.dpi.inpe.br/labisa/project/mapaquali/
https://doi.org/10.3390/rs13152874
https://doi.org/10.3390/rs13152874
https://doi.org/10.1016/j.isprsjprs.2020.10.009
https://doi.org/10.1016/j.isprsjprs.2020.10.009
https://doi.org/10.1016/j.isprsjprs.2021.10.009
https://doi.org/10.1016/j.isprsjprs.2021.10.009
https://doi.org/10.3390/rs11151744
https://doi.org/10.1111/tgis.2010.14.issue-s1
https://doi.org/10.1111/tgis.2010.14.issue-s1
https://openeo.org/documentation/1.0/processes.html
https://openeo.org/documentation/1.0/processes.html
https://geoserver.org/
https://doi.org/10.3390/rs13061125
https://doi.org/10.3390/rs13132428

Soille, P., A. Burger, D. De Marchi, P. Kempeneers, D. Rodriguez, V. Syrris, and V. Vasilev. 2018. “A Versatile Data-
intensive Computing Platform for Information Retrieval From Big Geospatial Data.” Future Generation Computer
Systems 81:30–40. https://doi.org/10.1016/j.future.2017.11.007.

Temporal Technologies. July, 2022. “Temporal – Open Source Durable Execution Platform.” Accessed July 20, 2022.
https://temporal.io/.

Wang, Lizhe, Yan Ma, Jining Yan, Victor Chang, and Albert Y. Zomaya. 2018. “pipsCloud: High Performance Cloud
Computing for Remote Sensing Big Data Management and Processing.” Future Generation Computer Systems
78:353–368. https://doi.org/10.1016/j.future.2016.06.009.

Xu, Chen, Xiaoping Du, Xiangtao Fan, Gregory Giuliani, Zhongyang Hu, Wei Wang, Jie Liu, et al. 2022. “Cloud-
based Storage and Computing for Remote Sensing Big Data: A Technical Review.” International Journal of
Digital Earth 15 (1): 1417–1445. https://doi.org/10.1080/17538947.2022.2115567.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 21

https://doi.org/10.1016/j.future.2017.11.007
https://temporal.io/
https://doi.org/10.1016/j.future.2016.06.009
https://doi.org/10.1080/17538947.2022.2115567

	Abstract
	1. Introduction
	1.1. Related big EO processing solutions
	1.2. Our proposal

	2. BDC-WE: A tool for big EO processing
	3. BDC-WE: implementation
	3.1. BDC-WE boilerplate project

	4. Case study
	4.1. Water quality indices from EO data
	4.2. Land use and land cover classification

	5. Final remarks and discussion
	Disclosure statement
	Data availability statement
	References

