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ABSTRACT  
Earth Observation (EO) satellites have produced vast image collections 
that are freely accessible to society. However, handling these images 
often surpasses the capabilities of traditional hardware and software for 
EO data storage and processing, posing challenges for traditional 
Spatial Data Infrastructure (SDI). To overcome these challenges, 
innovative cloud computing and distributed systems have been 
developed, such as matrix databases, MapReduce systems, and web 
services. These technologies are now integrated into leading-edge 
platforms, forming a new generation of SDI for big EO data. These 
platforms have different characteristics in terms of governance, 
technologies, data access, infrastructure abstractions, data processing, 
and flexibility to extend their functionality. Our work contributes to the 
area of SDI for big EO data by proposing a server-side data-processing 
tool called Brazil Data Cube Workflow Engine (BDC-WE), based on 
workflow orchestration approach. BDC-WE provides a high-level 
interface using the openEO API for big EO data accessing and 
processing, allowing SDI maintainers to easily describe sequences of 
processes and integrate new algorithms. The architecture proposed in 
this study was implemented and the prototype was evaluated in two 
case studies described in this paper.
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1. Introduction

Earth observation (EO) data is crucial to map and comprehend the processes that occur on our pla-
net, promoting significant advancements in monitoring environmental changes, risk detection, 
urban occupation, surface temperature, and food security (Brown 2016; Kamali Maskooni 
et al. 2021). EO data sets are important sources to measure global indicators of United Nations’ Sus-
tainable Development Goals (SDGs), including Indicator 15.3.1 on land degradation (Giuliani 
et al. 2020) or Indicators 11.3 and 11.7 on land use and land cover (Ekim and Sertel 2021). By 
extracting information from EO data, researchers and policymakers can formulate and implement 
effective policies for protecting the environment and managing natural resources.

Satellite observations and geospatial data are being produced and shared at an unprecedented 
rate with petabyte production on a daily basis (Soille et al. 2018). Storing, processing, and analyzing 
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these vast datasets pose significant technological challenges that limit the ability of EO scientists to 
take advantage of their potential. These datasets often exceed the storage, processing, and memory 
capacities of personal computers, leading users to utilize only a fraction of the available data for 
scientific research and operational applications (Camara et al. 2016; Müller, Bernard, and Brau-
ner 2010; Xu et al. 2022). Thus, novel technological solutions are required to adequately store, pro-
cess, disseminate, and analyze these big EO datasets.

Spatial Data Infrastructure (SDI) provides an environment that fosters the use, management, 
and production of geospatial data by allowing people and systems to interact with 
technology (Masser 2019). In recent years, SDIs have implemented technological components 
that adopt the standards proposed by the Open Geospatial Consortium (OGC) and Inter-
national Organization for Standardization (ISO) to store, represent, disseminate, and process 
geospatial data. However, most current SDIs primarily focus on sharing and disseminating 
EO data as individual files through web portals and various protocols, such as HTTP, FTP, 
and SSH (Müller 2016).

1.1. Related big EO processing solutions

In the context of big EO data, managing, processing, and disseminating this enormous amount of 
data poses significant challenges for SDIs. This scenario demands more structured and precise 
research services, automated acquisition, spatiotemporal indexes, calibration, and availability pro-
cesses, as well as the ability to process data sets in the server-side, without needing to move them 
across the network (Camara et al. 2016; Xu et al. 2022).

To address these challenges, the EO community has developed new technologies in the form of 
platforms for big EO data. Serving as computational solutions, they offer a range of functionalities 
for managing, storing, and accessing extensive EO data. These platforms allow server-side proces-
sing, eliminating the need to download massive amounts of EO datasets. In addition, they provide a 
certain level of data and processing abstractions that are useful to EO community users and 
researchers (Gomes, Queiroz, and Ferreira 2020). The integration of different types of technologies, 
Application Programming Interfaces (APIs), and web services results in a more comprehensive sol-
ution for managing and analyzing extensive EO data. Examples of platforms for big EO data are 
Open Data Cube (ODC) (Killough 2018), Google Earth Engine (GEE) (Gorelick et al. 2017), JRC 
Earth Observation Data and Processing Platform (JEODPP) (Soille et al. 2018), Sentinel Hub 
(SH) (Milcinski and Kolaric 2023), pipsCloud (Wang et al. 2018), SEPAL (FAO 2023) and openEO 
platform (Schramm et al. 2021). They adopt different data abstractions, standards, or technological 
solutions despite their similar functionalities.

Gomes, Queiroz, and Ferreira (2020) performed a review and comparative analysis of these plat-
forms in relation to ten capabilities, including governance, infrastructure, data and processing 
abstractions, and extensibility. They pointed out that the greater the degree of abstraction delivered 
to the scientist, the greater the difficulty in providing flexibility in data-processing approaches. Plat-
forms for big EO data need layers of abstractions that enable both data scientists and data pro-
duction staff to express computations that exploit available computational resources. One 
possible alternative would be to provide scientists with a platform that provides two ways to per-
form server-side data processing. In the first form, an API with a high-level abstraction is made 
available for scientists to describe their analyzes in a manner equivalent to that provided by GEE 
or openEO. The second way allows new algorithms to be added to the platform. These algorithms 
would directly access the data and take advantage of the distributed processing capabilities provided 
by the platform.

In the Brazilian context, the Brazil Data Cube (BDC) project is an initiative of the National Insti-
tute for Space Research (INPE) to develop a platform for big EO data management and analysis. 
This project is producing 2 petabytes of Analysis-Ready Data (ARD) and multidimensional EO 
data cubes of satellite images Landsat-8/-9, Sentinel-2, CBERS-4/-4A and Amazonia for the entire 
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Brazilian territory (Ferreira et al. 2022, 2020). Besides that, it is developing a platform called Brazil 
Data Cube with services and tools to create, access, and analyze EO data cubes.

Currently, most of the ARD and EO data cubes of the BDC project are produced using two appli-
cations developed by the project team, BDC Collection Builder (Marujo et al. 2022) and BDC Cube 
Builder (Ferreira et al. 2022). These applications are configured by maintainers to discover and 
retrieve scenes from external providers of EO datasets, to index them in collections, to produce 
ARD and EO data cubes. These applications are configurable through the definition of processing 
workflows to enable the production of different types of products. This process is performed by 
defining a structure in JSON format that specifies the selection, parameterization, and chaining 
of a set of operations previously implemented in these tools (Marujo et al. 2022). There are two ver-
sions of these applications, one runs on AWS using Lambda services, and another runs on INPE’s 
on-premise servers (Ferreira et al. 2022).

To analyze the ARD and EO data cubes, the BDC project team provides a JupyterHub environ-
ment for associated researchers. In this interactive environment, scientists can develop and run 
scripts to process and analyze EO data using the on-premise servers of the INPE’s internal infra-
structure. To produce land use and land cover maps, these scientists use the SITS (Satellite 
Image Time Series) R package. This package provides functions to produce land use and cover 
maps from image time series extracted from EO data cubes using machine and deep learning 
methods (Simoes et al. 2021). This package uses parallelization techniques to speed up the proces-
sing of datasets. However, there is no native support for large-scale processing of clusters of com-
puters, as available in the BDC Collection Builder and BDC Cube Builder tools.

The ARD and EO data cubes of the BDC project can also be accessed and processed by the ODC 
framework. To integrate the BDC platform with the ODC framework, a tool for importing data was 
developed, and ODC modules were adapted to support the data produced by the BDC 
project (Gomes et al. 2021). As a result, this integration is made available to BDC users: (1) the 
ODC API in the BDC JupyterHub environment; (2) services for viewing metadata and data 
(ODC datacube-explorer and ODC datacube-ows); and (3) the ODC Stats tool, which allows parallel 
processing of scenes recorded in an ODC catalog.

Similar to the BDC Cube Builder, the ODC Stats is a command line tool that provides a set of 
previously defined statistical processing, but allows new processing functions to be added from 
the extension of the Statistic class and the implementation of two new methods: – Measurements, 
which provides a list of measurements that the class will produce, and – compute, which takes a 
xarray.Dataset and returns a xarray.Dataset with the computed measurements (Killough, Rizvi, 
and Lubawy 2021). Scene processing is described using a YAML file.

1.2. Our proposal

A common characteristic observed in all solutions in the previous subsection is the approach 
used to describe the processing tasks. The explicit or implicit use of Directed Acyclic Graphs 
(DAGs) to represent workflows has been observed in GEE, openEO, BDC Collection Builder, 
BDC Cube Builder, and ODC Stats. While BDC Collection Builder, BDC Cube Builder, and 
ODC Stats use text files to describe processing flows, GEE and openEO provide a higher-level 
interface, allowing the user to write code in a programming language (Javascript and Python 
for GEE and Javascript, Python, and R for openEO). In both cases, these scripts are converted 
into data structures that represent DAGs and are sent to run on the backend. Using this tech-
nique of sending code close to the data, known as the Moving Code approach (Müller 2016), EO 
platforms are evolving to integrate data ready for analysis and technologies for extracting infor-
mation on the server side.

To address the BDC project demand for providing a system where users and developers can 
describe sequences of processes to be efficiently executed in the project server-side infrastructure, 
we propose a tool called BDC Workflow Engine (BDC-WE). This paper presents the software 
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archicture and the prototype of this tool. The BDC-WE uses DAGs as a core concept and integrates 
the openEO API to allow the submission and control of processes by the users. To take advantage of 
all computational power available in the INPE’s infrastructure of the BDC project, this system uses 
technologies for orchestrating processes distributed in clusters of computers.

The remainder of this paper is organized as follows. In Section 2, we present the main concepts 
adopted and the proposed architecture. Section 3 describes the implementation of the BDC-WE 
prototype. Section 4 presents two study cases. In the first one, legacy processing flows from 
INPE’s Mapaquali project were converted to DAGs to be processed in the BDC-WE. In the second 
case study, the processing flow of a land use and land cover classification application written in R 
language using SITS package was converted into DAGs and executed using the BDC-WE. Finally, in 
Section 5, we present the final considerations and the future steps that will be carried out.

2. BDC-WE: A tool for big EO processing

The BDC-WE architecture uses workflow as a central concept for the representation of processing 
described by the chaining of tasks. Direct Acyclic Graphs (DAGs) are used to represent these 
workflows. In this approach, each vertex of a graph represents a specific operation and the edges 
indicate the data dependency between each operation. The nomenclature defined by openEO is 
used as reference (Schramm et al. 2021). Vertices (tasks) are called Process(es) and chains of Process 
(DAG) are called Process graph(s)(PGs).

Figure 1 illustrates a simple example of PG with four Processes. This workflow, which illustrates 
data collection from an external provider, includes Processes for: (i) scene discovery from an exter-
nal provider; (ii) downloading the scenes to a local repository; (iii) registration of new scenes in a 
metadata catalog; and (iv) publication of new scenes in a Web Map Service (WMS).

In the BDC-WE architecture, Process represents a meta-task, which means an operation class 
that does not have a functional core that actually performs the expected operation. BDC-WE 
uses an abstraction called Resources to configure the Process with the operations to be performed.

Figure 2 shows the BDC-WE architecture. Some elements of this diagram represent software 
artifacts (Resources, Processing repository, and openEO Client), tools for workflow orchestration 
and task execution (Workflow Orchestrator and Workers), (web)services (openEO Backend, Rest 
API, and External Services), and Graphical User Interfaces (GUIs) (openEO Web Editor and 
Workflow Orchestrator Interfaces).

There are three different kinds of actors that interact with a BDC-WE instance: (1) Developers: 
people responsible for deploying or maintaining a BDC-WE instance. They have technical knowl-
edge for configuring BDC-WE and the other tools/services used; (2) Experts: people who master the 
topic of data products that are produced on the BDC-WE platform. They are responsible for the 
creation and parameterization of the algorithms that generate the data products; and (3) Users: 
people who make use of the services, APIs, or GUIs available in a BDC-WE instance. These actors 
do not need to have technical mastery of the inner workings of BDC-WE.

Resources are software artifacts (classes or functions) that abstract elements managed by the plat-
form and that provide the implementations of the processing that will be performed. They must be 
accessible to Workers so that they can be instantiated and passed as a dependency on Processes. For 
instance, to record scenes in a local catalog, a new Resource can be implemented by extending an 
interface called Catalog. The use of Resources prevents the platform from having to know the 

Figure 1. Process graph example.
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algorithms that will be used and expands the opportunities for use in different applications, only 
observing that the specificities of each solution are integrated.

Currently, BDC-WE manages the following types of Resources: 

. Provider: represents an external provider. It has functions for searching scene metadata in an 
external catalog;

. Catalog: represents a catalog of metadata that can be managed by BDC-WE. It provides func-
tions for searching, adding, and removing scenes in a catalog;

. Processor: represents a processing function that can be applied to a scene or a set of scenes;

. Publisher: represents an external service to the platform. Provides functions for publishing (and 
unpublishing) a scene or a set of scenes;

. Repository: represents a file system manager where data is retrieved or written. Provides func-
tions to manage the structure of directories where the data will be stored; and

. Features: represents a collection of vector data that can be used as input parameters to Processors. 
Provides a catalog of vector data.

The Processing Repository represents the repository with functions and classes that implement 
the available Processes and descriptions of Process Graphs available in the platform. Developers 
can add new Processes to the list of built-in Processes available in BDC-WE. Workers are responsible 
for executing Processes. The use of multiple Workers can increase the scalability of processing large 
volumes of data.

The Workflow Orchestrator (WO) is responsible for managing the execution of Process Graphs 
performed by Workers. It is responsible for loading the available Process Graphs and Process, check-
ing whether the input and output dependencies between the Process are compatible, receiving 
execution requests from Workflow Orchestrator Interfaces or openEO Backend through BDC-WE 
REST API, and managing the execution of the workflow on Workers.

Figure 2. BDC-WE architecture.
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BDC-WE REST API is a module responsible for managing access and identifying users who will 
submit and monitor processing. For example, it is used to limit access to restricted data or the num-
ber of running processes by a User. The openEO Backend is responsible for providing a standardized 
API so that external clients to the BDC-WE can interact with the platform using available libraries 
or graphical interfaces, such as the openEO client (JavaScript, Python, and R) and the openEO Web 
Editor. The openEO Backend is responsible for making Processes available in the BDC-WE instance 
so that users can describe their Process Graphs using an openEO client. This backend also allows 
Users to invoke the Process Graphs to run and download the produced data.

Workflow Orchestrator Interfaces (WOI) represents interfaces that allow interaction with WO, 
allowing the configuration and execution of Process Graphs. They are mainly intended for Develo-
pers, as they require technical mastery of how BDC-WE works and provide more details about Pro-
cess Graphs and processing executions. WOI can be used for scheduling recurring processing. The 
External Services represents the services used by the Resources in a BDC-WE instance, for instance 
an STAC Provider or an OGC WMS. In addition to Resources, which represent the resources that 
perform processing, BDC-WE provides a set of classes that represent processable elements. These 
data models have the necessary attributes to be managed by WO and can be extended by Developers 
to include other attributes or methods.

Figure 3 presents a class diagram supported by BDC-WE. The core element is Scene, which is 
extended to LocalScene and RemoteScene. A LocalScene represents a Scene that has a list of Measure-
ments and methods to combine with other LocalScenes (merge) or to remove it (remove). A 
Measurement has a path to a file and a MeasurementProperty. A MeasurementProperty has at 

Figure 3. BDC-WE data abstraction model.
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least two attributes: name and data type. A RemoteScene uses a method download that 
implements a way to download files from a Scene to the repository. An IndexedScene extends 
LocalScene by including a unique identifier for the Catalog in use. A Collection represents a set 
of Scenes that share the same MeasurementProperties types. A Cube is defined as a set of Scenes.

3. BDC-WE: implementation

To implement the architecture described in Section 2, a set of technologies were chosen as a way to 
accelerate the framework development process and to reuse open-source solutions that met the 
needs of the BDC-WE. The Python language was used as a reference, since it is used for the 
BDC Collection Builder and BDC Cube Builder and is also adopted by other platforms, such as 
Open Data Cube, openEO, and Google Earth Engine (Gomes, Queiroz, and Ferreira 2020).

The core element of the framework is the Workflow Orchestrator. In the ecosystem of processing 
data through workflows, there are a variety of open-source tools (Matskin et al. 2021), such as 
Apache Airflow (The Apache Software Foundation 2022), Argo (Argo 2022), 
Temporal (Temporal Technologies 2022), and Dagster (Elementl 2022).

Apache Airflow is a platform that allows the programmatic creation of workflows in Python and 
the scheduling and monitoring of executions (Harenslak and Ruiter 2021). DAGs are defined 
through the instantiation of Operators available on the platform. A DAG is created from the 
dependency configuration between Operators. Argo, however, has a higher granularity for 
tasks. This engine manages workflows in a Kubernetes environment, where each task is represented 
by the execution of a container and a workflow is defined through a YAML file.

Temporal is a platform for orchestrating workflows written in Go, Java, PHP, Python, or Type-
Script codes. In Python, a DAG is represented by a class decorated with a decorator, @workflow.-
defn, and each task is represented by a method decorated with @activity.defn. Temporal is a 
platform that is still under development and does not have full support for some languages. The 
tool documentation is also under development (Temporal Technologies 2022).

Dagster is a platform for orchestrating workflows in Python. The elements that constitute the 
processing workflow are defined using the decorators available in the dagster package. A 
workflow task is a function decorated with the @op decorator, and a DAG is a function decorated 
with @graph called a task function. By identifying the task calling sequence, Dagster creates a DAG 
structure with data dependencies between the tasks. This structure is used during the orchestration 
of workflow execution. In Dagster, a workflow can run locally in serial or parallel modes using 
DASK, Celery, Docker, or Kubernetes. Triggering the execution of a DAG can be performed 
through a WEB interface, GraphQL API, Python code, or by configuring Schedulers or Sensors. 
Dagster also has the ability to export a DAG to run on Apache Airflow. Dagster provides a paid 
service to run DAGs in a private cloud environment (Elementl 2022).

Dagster was chosen for use as a WO in the BDC-WE system, because it allows the dynamic gen-
eration of Process Graphs and provides a GraphQL API for the interaction between external appli-
cations and the orchestrator. This API is necessary for the interaction between the WO, WOI, 
openEO Backend, and BDC-WE Rest API. In addition, Dagster has a web graphical interface that 
allows an easy configuration and monitoring of the processes. It also has a variety of execution 
modes that allows the execution of all the processing locally, in a single thread or in multiple 
threads, or the distribution of the processing, using Celery, Dask, and/or Kubernetes technologies. 
These features facilitate the debugging process and the transition between development and oper-
ational environments.

In Dagster, the central processing unit is called Ops, represented through functions with the @op 
decorator. In this way, all Process developed for BDC-WE use this decorator with the respective 
metadata to ensure compatibility verification of function input and output parameters. Process 
Graphs in Dagster are called Graphs and are defined using functions decorated with @graph 
and making calls to Ops functions.
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The dynamic generation and configuration of these elements can be achieved through the classes 
available in the dagster package. Using this functionality, BDC-WE can create these elements 
from a JGF (Json Graph Format) file that describes a Process Graph. The objective of this feature 
is to facilitate the configuration and maintenance of the workflows managed by the BDC-WE. 
These files follow a high-level format, without requiring technical knowledge about how Dagster 
works. In Section 4, an example of the use of this functionality is presented.

BDC-WE-API was implemented through a REST service that intermediates requests from WO 
and openEO Backend to WO. REST requests are converted to GraphQL requests, which interact 
with the Dagster service. In the current phase of BDC-WE development, only access control via 
username and password is performed by BDC-WE REST API. The control of the number of run-
ning processes and the limitation of the Process Graphs available for each User are not implemented 
yet.

For the development of the openEO Backend, a template available in the repository (https:// 
github.com/Open-EO/openeo-python-driver) of the developers of the openEO standard was 
used as a starting point. It implements the general REST request handling of the openEO API 
and dispatches the work to a pluggable openEO backend driver. Thus, a driver was developed to 
translate requests from openEO API requests into requests for WO. This driver uses the same 
Resources used by Processors running on Workers. Resource Catalog, for example, is used 
by developed driver to find available collections or find scenes to be delivered to users.

The openEO backend interacts with WO through the GraphQL API available in Dagster. For this, 
a Python client, dagster_graphql_client, was developed (https://github.com/vconrado/ 
dagster_graphql_client). This client allows starting runs, tracking run status, retrieving results, 
and reloading Process Graphs available for running. This last feature, together with the possibility 
of generating new Process Graphs at runtime, provides great flexibility when creating new workfl-
ows. The implemented GraphQL client also has the possibility of controlling and managing 
executions through command line.

The BDC-WE is still a prototype and the openEO Backend developed still does not support all 
functions of the openEO standard. New functions are being incorporated according to the demand 
of Developers who use BDC-WE in INPE’s internal projects.

A minimal working set of Resources is available in BDC-WE prototype. These built-in Resources 
can be used in operational applications or serve as a reference for other implementations. The built- 
in Resource stac_provider available in BDC-WE, for instance, extends the RemoteScene 
class to create the StacRemoteScene class, which implements the downloading of scenes listed 
in a STAC service. Developers can develop new Resources from the inheritance of base classes made 
available in BDC-WE. Table 1 presents a list of Resources currently available in BDC-WE.

Table 1. Resources available in the BDC-WE.

Name Type Description

stac_provider Provider Performs queries in a STAC service.
odc_catalog Catalog Performs insert, remove, and search metadata operations in an Open Data Cube 

catalog.
crop_scene_proc Processor Crops a Scene using GDAL.
reduce_time_proc Processor Performs time reduction operations (max, min, mean, median) on a cube.
download_proc Processor Download a remote scene via HTTP.
geoserver_pub Publisher Publishes a scene to an ImageMosaic Store on a Geoserver server.
ssh_pub Publisher Run a previously configured ssh command.
discord_pub Publisher Sends a message to a Discord channel.
slack_pub Publisher Send a message to a Slack channel.
file_system_repo Repository Performs the creation of folders in the file system using the metadata of the scenes.
protected_file_system_repo Repository Performs the creation of folders in the file system, blocking the other folders for 

read-only.
gdal_features Features Loads and serves vector data in formats supported by GDAL.
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In addition to Resources and data models, BDC-WE prototype also provides a set of previously 
implemented Processes that can be used by Developers to build Process Graphs. With the currently 
available Processes, we believe that a large number of EO data processing applications demanded by 
INPE projects can be modeled because these Processes represent meta-tasks and that the code to be 
executed basically depends on the Resources used.

The Processes available in the framework are grouped into 4 types: 

. Discovery: Processes that allow discovery of the resources to be processed. The discovery can be 
performed in external services (Provider Resource) or in the catalog managed by BDC-WE (Cat-
alog Resource). Discovery functions in Providers produce RemoteScenes while discovery 
functions in Catalogs produce IndexedScenes;

. Processing: Processes that call a processing function (Processor Resource) which must receive a 
LocalScene or a LocalCube and will produce, respectively, a new LocalScene or a 
new LocalCube;

. Indexing: Process that registers a LocalScene or LocalCube in the catalog managed by the 
BDC-WE (Catalog Resource). The indexing process takes a LocalScene or LocalCube 
and produces, respectively, an IndexedScene or a IndexedCube;

. Publishing: Process which notifies an external service (Publisher Resource) about the creation or 
removal of a scene or set of Scenes. A Publisher receives a set of IndexedScene or an Indexed-
Cube and must return an object of the same type received.

Table 2 presents the Processes currently available in the BDC-WE prototype. In this Table, the 
first column presents the name of the Process, the second the type, and the third the Resources 

Table 2. Processes available in the BDC-WE.

Name Type Resources Input Output Parameters

discovery_external Discovery Provider – List 
[RemoteScene]

bbox, start_date, 
end_date, collection, 
ignore_assets, limit, 

offset
discovery_external_by_feature Discovery Provider, 

Features
– List 

[RemoteScene]
feature_id, start_date, 
end_date, collection, 
ignore_assets, limit, 

offset
discovery_not_processed Discovery Catalog – List 

[IndexedScene]
product, process_name, 

bbox, limit, offset
discovery_by_id Discovery Catalog – IndexedScene id
discovery_cube Discovery Catalog – List 

[IndexedScene]
product, bbox, start_date, 

end_date
index_scene Indexing Catalog, 

Repository
LocalScene IndexedScene product, asset_keys

index_cube Indexing Catalog, 
Repository

LocalCube IndexedCube product, asset_keys

apply_scene Processing List 
[Processor], 
Repository

LocalScene LocalScene process_name, subpath, 
override, args

seq_apply_scene Processing List 
[Processor], 
Repository

LocalScene LocalScene process_name, subpath, 
override, 

remove_partials, args
apply_cube Processing List 

[Processor], 
Repository

LocalCube LocalScube process_name, subpath, 
override, args

publish_scenes Publishing List 
[Publisher], 
Repository

List 
[IndexedScene]

List 
[IndexedScene]

product, asset_keys

publish_cube Publishing List 
[Publisher], 
Repository

IndexedCube IndexedCube product, asset_keys
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used. The fourth and fifth columns present the types of object expected as the input and output by 
Resource, respectively. The last column of this table presents the parameters expected from 
Processor.

If necessary, Developers can implement new Processes and make them available to the platform 
through a configuration file. The Processes defined by Developers and those currently available in 
BDC-WE are loaded dynamically using the Python library importlib. Developers can use the 
same strategy to implement Processor Resources that receive as an argument the definition 
of a function that can be dynamically loaded during the execution of the Process. This approach is 
especially useful for implementing the User-Defined Functions (UDF) support specified by 
openEO.

Using the Processes and Resources available in BDC-WE, the Process Graph illustrated in Figure 1
can be configured according to the diagram presented in Figure 4. In this example, a STAC provider 
is being used as an external RemoteScenes provider, the Processor download_proc will be applied 
to each RemoteScene found, the odc_catalog Catalog will be used to index the LocalScenes and 
finally, the IndexedScenes will be published on a Geoserver server, using the Publisher geoser-
ver_pub. Although this Process Graph illustrates a flow as if only a single RemoteScene was 
found in the first Process, BDC-WE allows the description of Process Graphs that execute, for 
example, the Process apply_scene (download_proc) in parallel for each RemoteScene 
returned by Process discovery_external (stac_provider). More details regarding the 
process description of Process Graphs are presented in Section 4.

3.1. BDC-WE boilerplate project

The architecture of the BDC-WE prototype with the chosen technologies is shown in Figure 5. To 
facilitate the process of deploying a BDC-WE instance, a preconfigured template project was devel-
oped to run BDC-WE with an Open Data Cube (ODC) catalog. This project has a basic example of 

Figure 4. Process graph example with resources configuration.

Figure 5. BDC-WE prototype architecture with the chosen technologies.

10 V. C. F. GOMES ET AL.



processing and a set of pre-configured services. To facilitate the deployment process, each service 
runs in a Docker container. These services have been grouped into four docker-compose files to 
facilitate the service management.

The main file, docker-compose.yml, has the minimum number of services for running 
BDC-WE: a PostgreSQL database, a RabbitMQ messaging service, and Dagster. The worker is 
configured in a separate file, docker-compose .worker.yml, to easily run on multiple ser-
vers. The third file is docker-compose.odc.yml, configures the following external services: 
datacube-explorer (STAC); Geoserver (WMS, WFS, WCS), nginx (as a file server); and a container 
with scripts to initialize the database and load the collections into the ODC base. The docker- 
compose.openeo.yml file configures the openEO backend and the openEO Web editor.

Using this complete project, it is possible to start a BDC-WE instance ready to work. Developers 
can also customize this template project to meet the specific needs of an application.

4. Case study

To evaluate the prototype of the BDC-WE, two case studies were conducted. The first case study, 
presented in Section 4.1, deals with the operationalization of the production of water quality indices 
of the MAPAQUALI project. The second, presented in Section 4.2, evaluates the use of BDC-WE 
implementation for land use and land cover classification using the SITS R package (Simoes 
et al. 2021). The second case study is useful to illustrate the use of the prototype with an application 
written in a language other than Python.

The BDC-WE boilerplate project was used as the starting point in both case studies. The Figure 5
illustrates the technologies and services used in both case studies. The ODC Catalog Database is a 
PostgreSQL instance configured with the schema used by ODC. The STAC service used by Workers 
is the publicly available BDC (Ferreira et al. 2020) instance. The ODC Explorer and Geoserver ser-
vices were used for data dissemination using the STAC and OGC WMS standards.

4.1. Water quality indices from EO data

This case study was developed to validate the BDC-WE prototype in an operational environment 
and verify its applicability for producing EO data products. The MAPAQUALI project was selected 
for this case study. This project, being carried out at INPE’s Aquatic Systems Instrumentation Lab-
oratory (LabISA), has, among its objectives, the generation and availability of time series of the 
spatial distribution of water quality parameters (Lima et al. 2023; Lobo et al. 2021; Maciel 
et al. 2019, 2020, 2021): Chlorophyll-a, Cyanobacteria, Total Suspended Solids, Dissolved Colored 
Organic Matter (CDOM), an underwater light field through the diffuse attenuation coefficient (Kd), 
and alerts of bloom events (especially cyanobacteria). The MAPAQUALI project also demands that 
these water quality parameters be customized for new aquatic systems added to the 
system (LabISA 2022).

The MAPAQUALI project demands that a set of algorithms can be parameterized to generate 
and make available products for different areas of interest. To produce ARD, MAPAQUALI uses 
third-party scripts and algorithms written in Python produced by the project team. MAPAQUALI 
researchers also used this language to write scripts responsible for generating water quality par-
ameter products. Most of these scripts receive the paths of the bands of a scene, the algorithm 
configuration parameters, and the path(s) of the file(s) of the product(s) that will be calculated 
as input parameters.

Figure 6 show the general data flow of the products calculated using the MAPAQUALI platform. 
The blue rectangles represent the data used or produced, whereas the gray rectangles illustrate the 
processing tasks performed.

From the collection of raw data (Landsat-8 OLI and Sentinel 2 L1C TOA) in an External Provi-
der, a sequence of algorithms is applied to produce analysis-ready data (MAPAQUALI-ARD) used 
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as input for other water quality indicators algorithms. The second stage deals with the mapping of 
MAPAQUALI-ARD for the project’s regions of interest (ROI). In the case of MAPAQUALI, these 
ROI were lakes, water reservoirs, and other aquatic systems. Finally, in the third step, the clipped 
ARDs were used as inputs to water quality indicator models developed by the LabISA research 
group. The same function that produces a water quality product can be used for different ROIs 
or be exclusive to a single ROI.

The STAC and OGC WMS services were chosen to disseminate data produced by the MAPA-
QUALI platform. The WMS is used to view the data on the web portal of the MAPAQUALI 
platform, whereas the STAC allows users to consult the catalog and download the products gen-
erated by the platform. As a metadata catalog, the Open Data Cube was chosen, since this frame-
work meets the needs of the project and also provides the application datacube-explorer, which 
provides a STAC implementation and a visual interface for navigating between indexed collec-
tions in the catalog. For the WMS service, Geoserver (OSGeo 2022) was chosen, due to the pre-
vious experience of the MAPAQUALI team in the use and configuration of this server and the 
availability of a resource Publisher for Geoserver implemented by BDC-WE. In addition to pub-
lishing data in the WMS service, it was decided to publish messages in the Discord communi-
cation application. Thus, the MAPAQUALI team can monitor the generation of products more 
easily.

Briefly, the Resources selected for use in the case study of the MAPAQUALI project were: (i) stac 
(Provider); (ii) odc (Catalog); (iii) GDAL-Features (Features); and (iv) odc-stac and discord (Pub-
lishers). Wrapper functions were created as Processors for each legacy function previously devel-
oped by the MAPAQUALI team. The wrapper functions are responsible for receiving the 

Figure 6. MAPAQUALI products generation dataflow.
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parameters in the format used by BDC-WE and passing them on to the legacy functions in the for-
mat they expect. Listing 1 presents an example of the recurring structure of wrapper functions used.

Processing Graphs (PG) were created from the identified data flow to perform processing. To 
facilitate reading, the PG will be presented, indicating the process used and resource(s) used in par-
entheses. For example, index_scene (Catalog: odc) indicates the use of the process index_scene 
configured with the Open Data Cube catalog. Arrows indicate the direction of data flow.

Listing 1. Wrapper function example.

def processor_a(in_scene: Scene, dest: Path, resources: dict, **kwargs) ->
LocalScene:
f = Path(dest, "prod_a.TIF")
# call MAPAQUALI processing function
function_a(f, in_scene.measurement("B01").path, kwargs["nodata"])
return LocalScene (measurements=[Measurement (path=f, properties=

MeasurementProperties(name="prod_a", data_type=DataType.float32))])

The PGs used in the case study of the MAPAQUALI platform are: 

. Collect Scenes: discovery_external (Provider: stac) → apply_scene (Processor: 
download) → index_scene (Catalog: odc) → publish (Publishers: stac, geoserver, 
discord);

. ARD: discovery_by_id (Provider: odc) → mq_scene (Processor: download) →
index_scene (Catalog: odc) → publish (Publishers: stac, geoserver, discord);

. ARD ROI: discovery_by_id (Provider: odc) → crop (Processor: crop, Features: GDAL- 
features) → index_scene (Catalog: odc) → publish (Publishers: stac, geoserver, discord); 
e

. Product A: discovery_by_id (Provider: odc) → apply_scene (Processor: processor_a) 
→ index_scene (Catalog: odc) → publish (Publishers: stac, geoserver, discord); e

The Processes used are those listed in Table 2, while the Resources are those listed in Table 1. 
Processor mq_ard is a wrapper function that calls third-party scripts and MAPAQUALI functions 
to produce ARD data. Process Graph Product A represents the template used to generate the differ-
ent products from the MAPAQUALI platform, while processor_a refers to a wrapper function 
that, for example, calls a function that calculates one of the indices of water quality developed by the 
project’s researchers.

Listing 2 shows how the description of PG Product A is performed through a JSON file using the 
specification of the standard JSON Graph Format (Bargnesi et al. 2022).

Listing 2. Example of Process Graph description.

{"graph": {
"id": "process_a",
"label": "Produce the water quality index A",
"nodes": {
"discovery_by_id": {
"metadata": {
"type": "discovery_by_id",

"resources": {"provider": "odc"}}},
"apply_scene": {
"metadata": {
"type": "apply_scene",
"resources": {"processors": ["process_a"]}}},

"index_scene": {
"metadata": {
"type": "index_scene",
"resources": {"catalog": "odc"}}},

"publish": {
"metadata": {
"type": "publish",
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"resources": {"publishers": ["stac","geoserver", "discord"]}}}
},
"edges": [
{ "source": "discovery_by_id",
"target": "apply_scene",
"relation": "map"},

{ "source": "apply_scene",
"target": "index_scene",
"relation": "map"},

{ "source": "index_scene",
"target": "publish",
"relation": "collect"}

]}
}

Initially, each node of PG is defined. The type attribute indicates the Processor to be invoked. 
Optionally, it is possible to define the resources that are used by the Processor. The dependencies 
between nodes are defined in the edges attribute of the graph. For each dependency, the origin 
and destination of the data and the type of relation (map or collect) were provided. The 
Resources used in a PG must be previously defined in a configuration file for BDC-WE to manage 
these artifacts.

Listing 3 illustrates the configuration of Process process_a, which does not demand any other 
Resources and will receive, in addition to the process interface parameters defined by BDC-WE, the 
argument nodata. These arguments are useful so that processing function parameters can be 
configured without being previously defined in wrapper functions.

Listing 3. Processors config example.

{
"processors": {
"process_a": {
"path": "/path/to/wrappers.py",
"function": "process_a",
"resources": [],
"args": { "nodata": 0.0 }

}
… 

}
}

The configuration of data dependencies was performed using the deps attribute. Dependency 
map:discovery_by_id indicates that apply_scene is mapped (map) to each scene pro-
duced by discovery_by_id. On the other hand, the collect:index_scene dependency 
indicates that all scenes produced by index_scene are grouped into a list (collect) and then 
passed on to Process publish. When only one scene is produced by each Process, the processing 
flow is performed sequentially. On the other hand, if a Process produces a set of scenes, the next 
process can be performed in parallel. The concurrent execution of the Processes is managed by 
the WO. For example, running PG Collect Scenes that found two new scenes on the External Pro-
vider is illustrated by the diagram in Figure 7. The dependency of type map was used to map the 
multiple results of discover_external for each execution of apply_scene. The depen-
dency of type collect performs grouping of results before invoking Process publish. The 
map type dependency can also be used between a Process that produces only one scene and one 
that consumes only one scene.

Schedulers are used for recurring execution of PGs. In the case of MAPAQUALI project, this 
feature is used for PGs of the Collect Scene type, which searches for new scenes from external pro-
viders daily.

For the initialization of the other PGs, the Sensor resource was used. This functionality is used in 
the following situations: 
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. PG ARD begins when a new scene is downloaded by PG Collect Scenes.

. PG ARD ROI when a new scene is produced by PG ARD; and

. PGs of type Product A begin when a new scene is produced by the PG ARD ROI.

The PGs used in this instance of MAPAQUALI’s BDC-WE were also available for execution 
through the openEO interface. In this manner, researchers can execute algorithms with different 
parameters to carry out tests. The generated products can be downloaded to the researcher’s desk-
top using openEO’s API. These products are saved in a staging repository separate from the main 
repository. Likewise, the metadata of these products generated by researchers via the openEO API 
are not indexed in MAPAQUALI’s main catalogue. This choice was motivated to avoid contami-
nation of research data with products made available to the public. Figure 8 shows the openEO 
Web Editor interface for the BDC-WE MAPAQUALI instance.

4.2. Land use and land cover classification

In the BDC project, the R package SITS is used to produce land use and land cover maps from image 
time series extracted from EO data cubes using machine and deep learning methods (Simoes 
et al. 2021). The task of generating these maps is often divided into two phases: (1) training the 
machine and deep learning methods; and (2) classification using the model produced in the phase 
1. In the training phase, labeled samples of a region of interest (ROI) are used to calibrate the predic-
tive model. With this model, the scenes of this ROI, modeled as EO data cubes, are then classified.

Figure 7. Process graph collect scenes diagram.

Figure 8. openEO Web Editor of the BDC-WE prototype in the MAPAQUALI case study.
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For this case study, a Process Graph was created to classify the EO data cube, considering the 
existence of a previously calibrated predictive model. This classification phase consists in the follow-
ing function invocation sequence of the SITS package: 

(1) sits_cube: performs the query on the BDC STAC and defines one of a data cube for the 
region of interest;

(2) sits_classify: performs scene classification using a predictive model and the data cube 
produced in the previous step;

(3) sits_smooth: performs the smoothing of the classification performed in the previous step; 
and

(4) sits_label_classification: from the scene probability values, it converts to a label 
based on the highest probability of each pixel.

This algorithm was divided into two phases to run on BDC-WE, considering a PG type Discovery 
→ Process → Index → Publish. In the search phase, a new Provider, SitsProvider, was 
implemented. SitsProvider’s search method invokes the sits_cube function and produces a list of 
scenes to be processed. For this, a script was created in the R language, which receives the necessary 
parameters and invokes the sits_cube function. The data cube definition resulting from this 
function is then spatially split to define the smaller data cubes. This subdivision is performed by 
considering the grid used by the BDC for the collection. The purpose of this split was to make it 
easier to parallelize the sort run on each data cube. The data structure in R, representing the meta-
data of these smaller data cubes, was saved in .rda format. The search method of SitsProvider 
returns a list of objects of type SitsRemoteScene (which extends the RemoteScene class). Each of these 
objects has among its attributes the path to one of the data cubes generated by the script in R. This 
approach was used to represent an object produced in Python and processed in the R language.

The objects produced in the previous phase (discovery) were passed to a classified pro-
cessor. This function follows the structure presented in listing 1, and calls a script in R called 
classify.R, which receives as input parameter the path of the predictive model and file .rda of 
the data cube. This script is responsible for performing classification, smoothing, and labeling 
of the pixels of each data cube. In addition, it returned the path of the sorted file. This path is 
for the processor to classify and create the scene object, which is returned to the Process Graph.

The classified scenes were then indexed into a STAC catalog and published to an OGC WMS 
service (Geoserver). Figure 9 illustrates the Process Graph used in the case study and Figure 10
shows the results of the classification performed in this study.

5. Final remarks and discussion

This paper presents the architecture of a system called BDC-WE, based on workflows for big EO 
data processing. This architecture allows the inclusion of new algorithms and provides a high- 
level interface for users, using the openEO API. These characteristics meet the needs and alternative 
solutions presented by Gomes, Queiroz, and Ferreira (2020). The main contributions of the pro-
posed BDC-WE tool are: (1) the abstraction of EO data retrieval, processing, cataloging, and dis-
semination resources; (2) the definition of an interface to implement these resources; and (3) the 

Figure 9. Process graph diagram for image classification with SITS.
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ability to dynamically load these resources into processing workflows. The presented solution 
reduces the level of complexity required to Experts to include new processing functions in a proces-
sing tool for large EO datasets. Furthermore, decoupling the access API from the processing func-
tionalities allows other APIs to be integrated into the proposed architecture. To validate the 
proposed architecture, a prototype was developed and evaluated using two case studies.

The first case study showed us that the use of Process to represent meta-tasks made the process of 
creating PGs easier with algorithms previously developed by the MAPAQUALI project team. 
Through wrapper functions and the configuration of a PG with four Process (Discovery, Process, 
Index, and Publish), it was possible to produce most of the products of this project. Dagster’s sche-
duling functionality was useful, allowing new scenes to be found daily from providers and processed 
by the configured PG. Currently, the MAPAQUALI project is using an exclusive instance of the 
BDC-WE prototype to produce water quality indices.

In the second use case, we observed that the decomposition of the algorithm for image classifi-
cation into subtasks and the description through a PG facilitates the processing of massive data sets 
to produce land use and land cover maps using the SITS R package. The openEO API of the BDC- 
WE is used by users and developers to select a region of interest and to provide a file with a model 
previously trained by SITS. Then, BDC-WE executes the image classification PG distributing the 
Process to all available Workers.

These two case studies show us that the BDC-WE allowed applications, which were initially 
implemented to be executed sequentially or in parallel on a single machine, to easily gain processing 
scale. This is possible because of the description of these applications in Processes, which can be 
orchestrated by the BDC-WE. In this manner, once the application is modeled in the form of 
PG, new computational resources can be accommodated in the cluster to allow a gain in the pro-
cessing scale, without the need for any change in PG.

The integration of openEO with WO through requests to the GraphQL API proved to be efficient 
because it is possible to access all the resources available in Dagster. This separation between WO 

Figure 10. Land use and land cover map of the western region of the Cerrado biome produced using the SITS R package running 
on the BDC-WE prototype.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 17



and the module responsible for processing requests allows, for example, new APIs, such as OGC 
WPS and WCPS (Aiordăchioaie and Baumann 2010), to be integrated or developed in the future 
without the need to change the way processing is carried out. The proposed architecture uses 
openEO as a way of exposing processing services to clients and does not intend to evaluate or com-
pare its functions using other standards such as OGC WPS and WCPS. The architecture is struc-
tured in such a way as to allow other APIs to be able to be integrated into the processing solution. 
The advantage of using openEO as a high-level interface for BDC-WE is the availability of tools, 
such as the openEO Web Editor and clients in three different programming languages, and the 
possibility of future integration with other EO data processing platforms using this API.

Using a development-ready openEO Backend framework accelerated the integration of this API 
into BDC-WE. In particular, to make collections available, calls were made to methods already 
implemented by a Resource of type Catalog. However, the implementation of the entire set of oper-
ators available in this API requires considerable effort. Version 1.0 of the openEO API specifies 241 
predefined processes. These predefined processes do not necessarily need to be implemented on all 
back-ends, requiring applications to perform queries (listProcesses) to check their 
availability (openEO 2023). For the integration of openEO with the BDC-WE prototype, the 
main goal was to validate the proposed architecture. Thus, the main operators crucial to the 
study cases were chosen for implementation, such as cross-band operation, time reduction 
(mean, maximum, minimum, and standard deviation), and invocation of predefined PGs specific 
to each use case. The inclusion of new openEO predefined processes in BDC-WE requires the 
implementation of a new Process that performs this function and the inclusion in the openEO Back-
end of the invocation of a PG configured to execute the respective Process.

By adopting openEO API as the interface for the submission and control of processes by the 
users, the data produced in the BDC-WE tool is closer to being compatible with FAIR principles. 
Through the use of the STAC service, openEO provides a domain-relevant community standard 
that can provide rich metadata and provenance of available EO data.

The results presented in this work show the potential of the architecture proposed and of the 
prototype. For future work, we intend to advance in the individualized management of the use 
of computational resources, reproducibility, and code sharing. Regarding the management of the 
use of computational resources, openEO API defines endpoints for billing management, such as 
checking the credit available to the user, cost estimate for operations, and information on the 
costs of operations performed. However, this API does not define how these operations should 
be performed. In the BDC-WE architecture, the BDC-WE REST-API module that mediates all pro-
cessing requests is responsible for these activities. A possible solution for this issue is the use of an 
approach inspired by the solution adopted by GEE, which limits the amount of RAM and CPU 
memory per processing. In the case of BDC-WE, the expectation is to limit the use of RAM by Pro-
cess and use CPU time as a metric to be discounted from users’ credits. The limits of memory and 
CPU used by a Process can be established in the execution of Docker containers and technology 
currently in use by BDC-WE.

Regarding code sharing, although the use of the openEO API facilitates this process in BDC-WE, 
it is still up to the researchers to manage the exchange of files among their peers. The ability to share 
the analyzes is the first step in the path to reproducibility (Ivie and Thain 2018). Carlos (2023)’s 
work presents a tool to assist in the process of managing research artifacts to ensure reproducible 
sharing, and should be considered as an important source of inspiration for including this capability 
in the BDC-WE.

In addition to these works, we intend to move forward with the implementation of BDC-WE 
through the implementation of all operators available in the openEO API, and automate the loading 
and availability of PGs through configuration files. As the implementation of this tool advances, our 
goal is to make BDC-WE the central tool for carrying out processing on the BDC platform, being 
responsible for both processing user analyzes and executing platform-specific applications, such as 
the BDC Collection Builder and BDC Cube Builder.
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