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Abstract

This study explores automated detection methods of forest disturbances using satellite image time series for Amazon deforestation
alerts. The research focuses on two municipalities in southern Amazonas, Brazil, known for high numbers of deforestation alerts.
Five methods—BFAST Monitor, CCDC, COLD, SCCD, and LSTM—were applied to Landsat image time series from 2017 to
2020 to identify forest disturbances and their effectiveness were evaluated, by comparing their results with alerts from the Brazilian
Real-time Deforestation Detection System (DETER). The results demonstrate that the COLD and SCCD methods achieved the
highest concordance rates with DETER alerts, at 82% and 85%, respectively, indicating their superior performance in disturbance
detection. The LSTM method also performed well, with an 83% concordance rate, showcasing the potential of deep learning
techniques in satellite image time series. The CCDC method followed with a 75% concordance rate, and the BFAST method had
a concordance rate of 72%. This study highlights the importance of utilizing advanced modeling techniques and multi-spectral
analysis for effective forest disturbance detection. The results underscore the need for continued refinement and calibration of these

methods to enhance their precision and reliability.

1. Introduction

Forest disturbance events significantly impact ecosystems and
are directly related to global climate change, greenhouse gas
emissions, and biodiversity conservation (Cohen et al., 2016).
Therefore, it is essential to systematically detect and monitor-
ing forest disturbances, enabling an early warning and effective
management to prevent further loss of forested land (Rogan and
Mietkiewicz, 2015).

Earth Observation (EO) satellite data offers consistent meas-
urements to monitor forest disturbances. In Brazil, there are
two important initiatives to detect forest disturbances associ-
ated to deforestation from EO data: Satellite Monitoring Pro-
ject of Deforestation in Legal Amazonia (PRODES) and the
Real-Time Deforestation Detection System (DETER), managed
by National Institute for Space Research (INPE) (Diniz et al.,
2015). To support these applications based on EO data, the
evolution of software technologies has improved data storage,
processing, and analysis capabilities, crucial for handling large
EO datasets and utilizing image time series to detect land use
and cover changes (Gomes et al., 2020).

The advancement in remote sensing technologies enhances the
accuracy of disturbance detection through image time series
analysis, facilitating near real-time ecosystem monitoring and
the development of automatic detection methods for Satellite
Image Time Series (SITS) (Woodcock et al., 2020). To sup-
port SITS analysis, big EO satellite data has been organized as
multidimensional data cubes. These data cubes, which com-
pile time series of images for spatially aligned pixels, provide
Analysis-Ready Data (ARD) that allow for immediate and in-
teroperable analysis with minimal effort from the user (Simoes
et al., 2021).

The Brazil Data Cube (BDC) project, managed by INPE, are
producing, integrating, and processing EO data cubes for Brazil

(Ferreira et al., 2020). This initiative involves the development
of a comprehensive computational platform, including software
applications and web services, to facilitate the access, integra-
tion, and processing of large volumes of EO data. The BDC
project leverages advanced methodologies and machine learn-
ing techniques to produce detailed land use and cover maps,
aiming to provide valuable insights for environmental monitor-
ing and sustainable land management across Brazil (Simoes et
al., 2021).

Forest disturbances are defined as discret events that disrupt the
integrity and funcionality of the ecossystems by modifying their
physical environment, reducing forest productivity (Fitts et al.,
2022). According to (Frolking et al., 2009), forest disturbances
substantially impact the biomass and canopy structure of trees,
which can include fires, windstorms, logging, shifting agricul-
ture, land conversion, floods, landslides, and avalanches.

Deforestation poses significant threats to the Amazon, one of
the most biodiverse regions on Earth. The large-scale removal
of trees disrupts the intricate balance of the ecosystem, leading
to habitat loss and a decline in biodiversity as numerous plant
and animal species are driven to extinction. This degradation
also affects the livelihoods of indigenous communities who de-
pend on the forest for their cultural and economic well-being
(Vieira et al., 2012).

Deforestation contributes to climate change by releasing sub-
stantial amounts of stored carbon dioxide into the atmosphere,
exacerbating global warming. The loss of forest cover fur-
ther destabilizes regional weather patterns, potentially altering
rainfall distribution and leading to more frequent and severe
droughts. These changes not only impact local agriculture and
water supplies but also have far-reaching consequences for the
global climate system, emphasizing the urgent need for ef-
fective monitoring and conservation strategies to protect the
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Amazon (Carrero et al., 2020).

Advanced remote sensing techniques have proven essential for
detecting and understanding these disturbances. A study by
(Hamunyela et al., 2016) demonstrated the use of spatial con-
text to improve early detection of deforestation from Landsat
time series. By incorporating spatial and temporal analysis,
their methodology enhanced the accuracy of identifying early-
stage deforestation events, which is crucial for timely interven-
tion and conservation efforts.

Another research by (Dutrieux et al., 2016) focused on recon-
structing land use history in Brazil using Landsat time series
data. Their study utilized a combination of spectral and tem-
poral data to track the dynamics of swidden agriculture systems.
This approach allowed for a detailed understanding of land use
changes over time, highlighting the potential for remote sensing
to inform sustainable land management practices.

(Campanbharo et al., 2023) explored the use of the BFAST Mon-
itor algorithm to detect forest disturbances in Maranhao, Brazil.
Their research highlighted the utility of NDVI (Normalized Dif-
ference Vegetation Index) time series in identifying areas of
forest degradation, emphasizing the importance of continuous
monitoring to capture subtle changes in forest health. The study
found that a significant portion of the monitored areas showed
trends of disturbance, demonstrating the effectiveness of time
series analysis in forest management.

In a study by (Souza et al., 2021), a data-driven approach was
applied to detect disturbances in the Brazilian savannas using
time series of vegetation indices. The research underscored the
challenges posed by phenological variations and the necessity
of developing robust algorithms to differentiate between natural
and anthropogenic disturbances. Their findings support the on-
going refinement of remote sensing techniques to improve the
accuracy of disturbance detection in diverse ecosystems.

The analysis conducted by (Berveglieri et al., 2021) examined
the trends and changes in the successional trajectories of trop-
ical forests using the Landsat NDVI time series. This study
linked the structural variability of forest canopies to succes-
sional stages, providing insights into the ecological processes
driving forest recovery and degradation. The integration of
NDVI trajectories with 3D photogrammetric information al-
lowed for a nuanced understanding of forest dynamics over
time.

These studies collectively highlight the advancements in remote
sensing methodologies for forest disturbance detection. They
underscore the critical need for continuous monitoring and the
development of sophisticated algorithms to accurately capture
the dynamic nature of forest ecosystems.

Building upon these advancements, this study evaluate the
BFAST Monitor (Verbesselt et al., 2012), CCDC (Zhu and
Woodcock, 2014), COLD (Zhu et al., 2020), SCCD (Ye et al.,
2021), and LSTM (Kong et al., 2018) methods to identify dis-
turbance events in forest area by monitoring time series from
2017 to 2020, in a pixel basis, with Landsat image data cube
for two case studies in the southern Amazon.

2. Methods

The methodology utilized in this study involves process that
can be divided into several key steps, as illustrated in the Figure

1. The first step involves acquiring satellite image time series
data from the selected study area, utilizing the Brazil Data Cube
(BDC) project. Once the satellite image time series data is re-
trieved, it undergoes a preprocessing phase. This step includes
tasks such as filtering to remove pixels with high cloud cover,
linear interpolation to fill missing values, and selection of rel-
evant spectral bands. The preprocessed data is then analyzed
using various disturbance detection methods. The final step in-
volves evaluating the results of the disturbance detection meth-
ods by using clear cut data from DETER database for 2020.
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Figure 1. Flowchart illustrating the methodology employed in
the study for automated detection of forest disturbances using
satellite image time series analysis.

2.1 Study Area

The study area, illustrated in Figure 2, encompassed part of
Apui and Novo Aripuand, located in the Amazonas state. We
selected these areas due to the significant increase in deforested
areas in 2020, with Apuf experiencing an increment of 259.63
km? and Novo Aripuana 110.33 km?.

The municipalities of Apui and Novo Aripuand, located in the
southern part of the Amazonas state in Brazil, are significant re-
gions that have experienced substantial changes in land use and
cover, primarily due to the expansion of agricultural activities
and deforestation. The region’s climate is characterized by an
equatorial humid climate with distinct wet and dry seasons, and
the dominant vegetation is dense tropical rainforest. Apui is
largely influenced by the Transamazon Highway (BR-230) and
has a population heavily reliant on cattle ranching and agricul-
ture. The region has been a hotspot for deforestation, driven by
economic activities and shifts in policy that have affected land
use practices (Vidal and Neto, 2023).

Novo Aripuand, similarly, is part of the broader dynamics af-
fecting the southern Amazonas, where infrastructure develop-
ments such as road constructions have facilitated increased ac-
cess and agricultural expansion. The interplay between these
environmental conditions and human activities has led to sig-
nificant ecological impacts, including biodiversity loss and
changes in forest cover. These transformations highlight the
need for integrated policies to manage land use and protect
the remaining forest areas in both municipalities (Yanai et al.,
2022).
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Figure 2. Map showing the study area located in the
municipalities of Apui and Novo Aripuand, Amazonas, Brazil.
The selected areas are highlighted due to significant increases in
deforested areas in 2020.

2.2 Disturbance Detection Methods

Various methodologies have been developed and refined to en-
hance the precision and reliability of disturbance detection us-
ing satellite imagery. This section outlines the key detection
methods employed in this study, describing their approaches.

Continuous Change Detection and Classification (CCDC) is de-
signed for the continuous monitoring of land disturbances us-
ing Landsat time series data. It identifies various land cover
and land use changes by detecting breaks in the time series
that deviate from predicted statistical intervals. While CCDC
is highly effective at detecting disturbances causing signific-
ant spectral changes, it may sometimes flag non-disturbance-
related changes, reducing its accuracy. Nevertheless, CCDC re-
mains a valuable tool for long-term disturbance monitoring as
it continuously updates its model with new observations (Zhu
and Woodcock, 2014).

The COntinuous monitoring of Land Disturbance (COLD) al-
gorithm builds upon CCDC by incorporating a broader range
of spectral bands and indices, along with advanced statistical
methods for outlier removal and model initialization. COLD
identifies potential land disturbances by comparing model pre-
dictions with new Landsat observations and flagging signific-
ant deviations as disturbances. This approach ensures high ac-
curacy in detecting various disturbance types, including those
with subtle spectral changes, making COLD a comprehensive
tool for large-scale and continuous land disturbance monitoring
(Zhu et al., 2020).

Stochastic Continuous Change Detection (SCCD) improves
upon COLD by using a state space model, which treats trends
and seasonality as stochastic processes. This allows for better
modeling of temporal dynamics and more accurate real-time
disturbance detection. The SCCD method reduces omission er-
rors and provides faster disturbance alerts compared to COLD,
making it highly suitable for operational monitoring of forest

health. It demonstrates high computational efficiency and ac-
curacy in detecting both abrupt and subtle forest disturbances
using dense Landsat data (Ye et al., 2021).

The Breaks For Additive Season and Trend (BFAST) method
decomposes time series data into seasonal, trend, and remainder
components to monitor changes continuously. By modeling
these components, BFAST can identify structural changes that
indicate disturbances. This method is particularly useful in en-
vironments with strong seasonal variations, as it can distinguish
between normal seasonal fluctuations and actual disturbances.
The use of trigonometric functions to model seasonality en-
hances BFAST’s ability to detect subtle changes in vegetation
cover, providing robust disturbance detection (Verbesselt et al.,
2012).

Long Short-Term Memory (LSTM) networks, a type of recur-
rent neural network, can be employed for disturbance detection
by analyzing satellite image time series (SITS). In the refer-
enced work, LSTM models were trained with historical SITS
data to predict new time series data. Disturbances were then
detected by identifying significant deviations between the pre-
dicted and actual data. This method effectively captures tem-
poral dependencies in data, making it well-suited for real-time
disturbance detection across diverse ecosystems due to its abil-
ity to adapt to non-seasonal patterns (Kong et al., 2018).

2.3 Data

For our analysis, we utilized image time series from 2017 to
2020 extracted from the 16-day temporal composite Landsat
data cube of the Brazil Data Cube (BDC) project. We used im-
age times series of NDVI, of the spectral bands Red, Green,
Blue, Near Infrared (NIR), Shortwave Infrared 1 (SWIR1),
Shortwave Infrared 2 (SWIR2), and of the Pixel Quality As-
sessment Band (QA _PIXEL).

The Landsat data cube, used in this work, is composed of 16-
day temporal composites, where the most recent cloud-free
pixel within each 16-day window is selected. These images are
then aggregated into multidimensional data cubes and distrib-
uted using the BDC Grid System (V2), specifically in the Me-
dium (MD) grid, which consists of 211200m x 211200m tiles.
This hierarchical tiling system ensures efficient data manage-
ment and retrieval, allowing for scalable processing and ana-
lysis of large volumes of Landsat-8/OLI data.

Moreover, the polygons of alerts for Clear Cut in 2020 from
the DETER system, collected via TerraBrasilis, were used to
delimit the areas to be analyzed. The DETER system con-
tinuously maps forest suppression and degradation in the Legal
Amazon as well as areas with suppression of primary vegetation
in the savanna and forest formations of the Cerrado biome.

DETER methodology considers clear-cutting as the complete
removal of forest cover, in an abrupt manner, regardless of the
intended use for the deforested area. In DETER, clear-cutting
refers to the deforestation feature observed with exposed soil in
the image used for its detection.

Until 2015, DETER used MODIS and WFI sensors with a 250-
meter resolution, mapping deforestation in areas of 25 hectares
without distinguishing between deforestation and degradation
(Shimabukuro et al., 2006). From 2015, it adopted WFI sensors
from CBERS-4, 4A, and Amazonia-1/INPE satellites. This al-
lowed differentiation between detected deforestation and de-
gradation and reduced the minimum alert area to 3 hectares
(Diniz et al., 2015).
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To address the potential edge effects caused by the differences
in resolution between the data used, a negative buffer process
was applied to the polygons from the DETER alerts. The DE-
TER system employs satellites with resolutions between 56 and
64 meters, while the Landsat data used in this study has a finer
resolution of 30 meters. This discrepancy can lead to inac-
curacies at the edges of detected disturbances. Applying a 60-
meter negative buffer is a potential approach to mitigate these
issues, ensuring that the analysis focuses on the core areas of
deforestation and degradation detected by the Landsat imagery
that has 30 meters of spatial resolution, which is the main ob-
jective of an alert system.

After selecting the spectral bands, we used these buffered poly-
gons from the 2020 DETER alerts to select pixels inside these
polygons and to extract image time series from these pixels.
The methods applied, including CCDC, COLD, and SCCD,
utilized time series of the spectral bands Red, Green, Blue, NIR,
SWIR1, SWIR2, and QA. In contrast, the BFAST and LSTM
methods used only time series of NDVI.

Initially, the NDVI data underwent a filtering process to exclude
pixels with more than 60% cloud cover, corresponding to 55 re-
cords. Subsequently, the data for the remaining pixels were sub-
jected to linear interpolation to fill in missing values. Notably,
the CCDC, COLD, and SCCD methods do not require this in-
terpolation, as they use the cloud mask from the QA pixel band
to internally select clean observations.

Finally, we employed Python-based libraries to detect disturb-
ances in the dataset. Specifically, the BFASTMonitor function
from the bfast library, detect from the pyccd library, and
cold_detect and sccd_detect from the pycold library were
used. Additionally, to configure the LSTM, we utilized the
tensorflow library. Unlike the other methods, there is no ded-
icated library for applying LSTM in the context of disturbance
detection, thus requiring the use of tensorflow to implement
this neural network approach.

We used DETER data to evaluate the consistency between the
disturbances detected by these methods and the alerts detected
by the monitoring system. Our validation approach focused on
the concordance between the pixels identified as disturbed by
each method and the areas delineated by the DETER alert poly-
gons for the year 2020. It is important to note that this eval-
uation is partial, as it assesses the alerts generated by DETER
rather than the deforestation identified by each algorithm. This
analysis does not measure the accuracy of the detection meth-
ods but rather their agreement with the DETER alerts.

3. Results

The concordance analysis results, detailed in Table 1, demon-
strate notable variations in the effectiveness of the different
methods. Overall, methods that utilize time series analysis of
multiple spectral bands, such as COLD and SCCD, achieved
the best performance. Specifically, the COLD method had a
concordance rate of 82%, while the SCCD method showed the
highest performance with an 85% concordance rate. The LSTM
method, which leverages deep learning for time series analysis,
also performed well, achieving a concordance rate of 83%. The
CCDC method followed with a 75% concordance rate, and the
BFAST method, which only utilizes the NDVI time series, had
a concordance rate of 72%. These findings align with the ob-
servations reported in (Ye et al., 2021), which highlight superior

outcomes of methods that analyze multiple spectral bands and
employ advanced modeling techniques for detecting forest dis-
turbances accurately.

Method | Concordance
BFAST 2%
CCDC 75%
COLD 82%
SCCD 85%
LSTM 83%

Table 1. Percentage of agreement between the disturbances
identified by the methods and the DETER alerts.

Figure 3 illustrates the comparison within a selected small area.
The top image (a) shows the buffered DETER polygon, mark-
ing an alert issued on May 21, 2020. The images below display
the results from the BFAST (b), CCDC (c), LSTM (d), COLD
(e), and SCCD (F) methods, respectively.
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Figure 3. Results of the disturbance detection methods within
the buffered DETER polygon alert issued on May 21, 2020 (a):
BFAST (b), CCDC (c), LSTM (d), COLD (e), and SCCD (f).

Analyzing the image, it becomes evident that BFAST (b) cap-
tures fewer pixels within the target area compared to other
methods, a point already noted in the concordance. Notably,
the detection dates are clustered around the alert date, specific-
ally between April and June. Moreover, BFAST maintains a
homogeneous distribution of detection dates among neighbor-
ing pixels, which indicates consistency in temporal detection
within the affected area.

The CCDC (c) method, on the other hand, captures a larger
number of pixels. However, the majority of these detections oc-
cur after the alert date, starting from June and extending to Oc-
tober. This delay in detection is similar to what is observed with
the COLD method (e), which also identifies a broader area but
with detection dates largely following the alert. Additionally,
CCDC’s results reveal significant variability in detection dates
among neighboring pixels, indicating less temporal coherence.

COLD (e) shows an ability to detect a larger area of disturb-
ance, similar to CCDC, but it also shares the characteristic of
post-alert detection dates. This suggests that while COLD is
effective in spatial coverage, its temporal detection lags behind
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the actual disturbance events. The method also exhibits less
homogeneity in detection dates among neighboring pixels.

The LSTM (d) and SCCD (f) methods demonstrate a higher
degree of temporal homogeneity and spatial coverage in their
detection of disturbances. These methods successfully capture
a majority of the disturbances close to the alert date, showing
a robust ability to detect changes promptly. Furthermore, they
indicate that the deforestation process in the top of example area
(Figure 3) might have commenced prior to the DETER alert.

The results obtained with BFAST might be influenced by the
preprocessing step that involved removing time series with
more than 60% cloud cover. Since the analyzed region is a trop-
ical rainforest characterized by high cloud cover, this prepro-
cessing step significantly impacts the method’s performance.
BFAST does not have built-in strategies to handle data gaps
caused by clouds, which leads to fewer detected disturbances in
areas with persistent cloud coverage.

The issue caused by cloud cover is addressed by the CCDC,
COLD, and SCCD methods, as they internally manage the
lack of available observations by utilizing the pixel quality
band. CCDC employs a systematic approach to exclude cloud-
contaminated pixels, ensuring that only clear observations are
used for disturbance detection. Building on this, the COLD
method enhances this capability by incorporating additional
statistical methods, allowing for more accurate identification of
cloud-free observations. SCCD further improves upon these
strategies by using a state-space model that treats trends and
seasonality as stochastic processes, providing better handling
of data gaps caused by clouds. These robust strategies enable
COLD and SCCD to perform more effectively in regions with
high cloud cover, ensuring reliable disturbance detection even
in challenging conditions.

The results obtained with the LSTM method are very similar
to those achieved with the SCCD method, as both utilize ad-
vanced temporal analysis strategies. LSTM leverages the cap-
abilities of recurrent neural networks to capture short-term and
long-term temporal dependencies in satellite image time series
data. On the other hand, SCCD employs a state space model
that treats trends and seasonality as stochastic processes. This
similarity in approach allows both methods to effectively detect
changes in forest cover with high accuracy, demonstrating their
robustness in analyzing complex temporal patterns in the data.

It is worth noting that using LSTM in this scenario requires
a greater effort in configuring the network compared to other
models. While all non-machine learning models used default
parameters, the LSTM had to undergo a process of determining
the best configurations for the number of layers, learning rate,
epochs, and optimizer. This configuration effort is necessary to
achieve good results, but the same network configuration may
not be suitable for other areas. This implies that while LSTM
can yield effective results, the effort involved in configuration
can be a limiting factor, especially for systems intended to serve
as near-real-time alert emitters.

Additionally, it is important to note that the alerts issued by
DETER do not distinguish between the time of occurrence and
the time of detection. The process of deforestation can occur
gradually, but its identification as clear-cutting or degraded area
happens only when it is captured by the satellite sensor. There-
fore, the date provided by the polygons is directly related to

the detection time and may not necessarily indicate when the
change initially began.

The results obtained from BFAST, SCCD, and LSTM methods
in Figure 3 suggest that the deforestation process in the area
likely began at the top at the end of April and progressed down-
ward throughout May, being detected by DETER only in the
images from May 21.

To illustrate the forest disturbance detection methods used in
this study, two high-resolution images from the Sentinel-2 satel-
lite, with low cloud cover, were selected. The first image (Fig-
ure 4), dated June 17, 2019, was captured before the forest dis-
turbance, while the second image (Figure 5), from June 16,
2020, was recorded after the occurrence of the disturbance.
Both images highlight, in red, the buffered DETER polygon
used in the study, allowing for a clear visual comparison of
changes in forest cover over time. This choice is crucial to
demonstrate the methods’ capability to accurately identify and
monitor deforested areas.

In the images, it is observed that the area within the buffered
polygon shows a significant difference between the two years,
indicating an extensive removal of forest cover between 2019
and 2020. The 2020 image reveals a clear area, contrasting with
the dense vegetation seen in the 2019 image. This visual con-
trast is an evidence of the effectiveness of the detection methods
employed, which correctly identified changes in forest cover.
These images are representative of the results obtained and em-
phasize the importance of using high-resolution images and ad-
vanced temporal analysis methods to efficiently and accurately
monitor and validate forest disturbances.

Figure 4. Sentinel-2 image of the study area taken on June 17,
2019, before the occurrence of forest disturbance. The red
polygon indicates the buffered DETER alert area used in the
analysis.

It is worth noting that the non-detection of the clear cut area
by the DETER system in the Figure 5 can be attributed to sev-
eral causes. First, cloud cover frequently obscures satellite im-
agery, and DETER’s reliance on lower-resolution sensors (64
meters) may miss smaller or partial deforestation events visible
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Figure 5. Sentinel-2 image of the study area taken on June 16,
2020, after the forest disturbance. The red polygon indicates the
buffered DETER alert area used in the analysis.

in higher-resolution Sentinel-2 images (10 meters). Addition-
ally, the time between satellite revisits could delay detection
if deforestation occurs rapidly. The system may also struggle
with gradual or subtle changes in forest cover, which advanced
methods like COLD and SCCD can detect more sensitively.
Lastly, DETER prioritizes large-scale deforestation for imme-
diate enforcement, potentially overlooking smaller areas that do
not meet its alert thresholds.

An important aspect of forest disturbance detection methods is
their ability to quantify the magnitude of the detected disturb-
ances. Methods such as BFAST, COLD, and SCCD not only
identify the occurrence of disturbances but also provide detailed
information on the extent and severity of these events.

The statistical analysis of the COLD method’s results provides
insightful data on the magnitudes of disturbances detected
across various spectral bands. Among these bands, the Near
Infrared (NIR) band stands out with the highest standard devi-
ation (0.00318) and the widest range of values, from -0.34610
to 0.31698. This indicates that the NIR band is the most sensit-
ive to changes in forest cover, likely due to its ability to capture
variations in vegetation health and biomass. High magnitudes
of change in the NIR band suggest significant alterations in ve-
getation structure, typical of clear-cutting events where large
areas of forest are removed, drastically altering the reflectance
properties captured by the NIR sensor.

Conversely, the visible bands (Blue, Green, Red) show lower
standard deviations and narrower ranges of values, with the Red
band having a slightly higher standard deviation (0.00122) com-
pared to Blue and Green. While these bands are also import-
ant for detecting disturbances, their lower sensitivity compared
to the NIR band might indicate that they capture less abrupt
changes in forest cover, such as gradual deforestation or de-
gradation.

The Shortwave Infrared bands (SWIR1 and SWIR?2) also ex-
hibit significant standard deviations (0.00240 and 0.00227, re-

spectively), and a notable range of values, suggesting their
effectiveness in identifying changes in moisture content and
structural components of the forest. These bands are particu-
larly useful in detecting changes in soil and vegetation moisture
levels, which are also indicative of deforestation activities.

The statistical analysis of the SCCD method’s results also
provides valuable insights into the magnitudes of disturbances
detected across different spectral bands. Similar to the COLD
method, the SCCD evaluates changes in the Blue, Green, Red,
NIR, SWIR1, and SWIR2 bands, each one showing distinct
characteristics in terms of mean values, standard deviations, and
ranges of values, which are crucial for interpreting the severity
of forest disturbances such as clear-cutting.

Among these bands, the Shortwave Infrared 1 (SWIR1) band
stands out with the highest standard deviation (0.00325) and
a substantial range of values from -0.08230 to 0.20824. This
indicates that the SWIR1 band is highly sensitive to changes
in forest cover, particularly in detecting variations in moisture
content and structural components of the forest. High mag-
nitudes of change in the SWIR1 band suggest significant al-
terations, such as clear-cutting, which drastically impacts soil
and vegetation moisture levels.

The Near Infrared (NIR) band also shows a considerable stand-
ard deviation (0.00237) and a wide range of values from -
0.25275096 to 0.20369, highlighting its effectiveness in captur-
ing variations in vegetation health and biomass. Similar to the
COLD method, the NIR band’s sensitivity makes it an essential
indicator of substantial forest disturbances.

The visible bands (Blue, Green, Red) exhibit lower standard de-
viations and narrower ranges of values compared to the NIR and
SWIR bands. Among the visible bands, the Red band has the
highest standard deviation (0.00135) and a range of values from
-0.04029 to 0.10750. While these bands are also important for
detecting disturbances, their lower sensitivity compared to the
NIR and SWIR1 bands might indicate they are more effective
for identifying less abrupt changes in forest cover.

The Shortwave Infrared 2 (SWIR2) band shows significant
standard deviation (0.00252) and a notable range of values, sug-
gesting its usefulness in detecting changes related to forest dis-
turbances. The SWIR2 band’s ability to capture variations in
vegetation and soil properties makes it a critical component of
the SCCD method.

The BFAST method, unlike COLD and SCCD, provides res-
ults solely for the NDVI, as it is the only input data it receives.
The statistical analysis reveals that the mean NDVI change is
-0.00043, with a standard deviation of 0.0097. The NDVI val-
ues range from -0.58 to 0.28, indicating significant variability
in the detected disturbances. The negative mean value suggests
a general trend of vegetation loss. The minimum NDVI value
of -0.58 points to areas with substantial vegetation loss, while
the maximum value of 0.28 may indicate areas of regrowth or
less severe disturbances. Additionally, the median and percent-
iles (10th, 25th, 50th, 75th, 90th) being zero indicate that many
changes detected are minor or that there are numerous instances
with no significant change. This highlights that BFAST is sens-
itive to both large-scale and smaller-scale disturbances, under-
scoring the need for complementary methods like COLD and
SCCD for a more comprehensive analysis.

In summary, the BFAST method’s reliance on NDVI offers a
focused view of vegetation health and changes. The statistical
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results suggest that BFAST is effective at detecting both large-
scale disturbances with significant vegetation loss and smaller-
scale changes. However, its sensitivity to a wide range of dis-
turbance magnitudes underscores the importance of using addi-
tional spectral bands and complementary methods, like COLD
and SCCD, for a more comprehensive analysis of forest disturb-
ances.

4. Conclusions and Future Work

This study evaluated the performance of several automated dis-
turbance detection methods—BFAST Monitor, CCDC, COLD,
SCCD, and LSTM—using satellite image time series to monitor
forest disturbances in two municipalities in southern Amazo-
nas, Brazil. The results demonstrated varying levels of concord-
ance between the automated methods and the DETER alerts,
with the COLD and SCCD methods showing the highest con-
cordance rates of 82% and 85%, respectively. The superior per-
formance of these methods highlights the importance of using a
wide range of spectral bands and advanced modeling techniques
for effective disturbance detection.

Challenges such as high cloud cover in tropical rainforests con-
tinue to affect the accuracy of methods like BFAST, which lack
integrated strategies to handle data gaps. However, other meth-
ods, such as COLD and SCCD, have shown remarkable resili-
ence to these challenges by effectively utilizing multi-spectral
data to improve detection.

Future research should focus on further exploring the current
methods in terms of refinement and calibration to improve de-
tection accuracy and reduce errors, particularly in regions with
high cloud cover. Strategies involving deep learning techniques
appear promising but require significant effort in parameteriza-
tion. Additionally, the evolution of validation methods should
include working with expert-analyzed samples of time series to
accurately assess the temporal detection precision of disturb-
ances. Longitudinal studies are also essential to evaluate the
evolution of forest disturbances over time and to assess the ef-
fectiveness of conservation policies.

Expanding the application of these methods to other regions of
the Amazon and different biomes will help validate the general-
izability and robustness of these approaches. Additionally, in-
tegrating data from multiple satellite sensors, such as Sentinel-2
and RADAR, could improve the temporal and spatial resolution
of disturbance detection.

One of the possibilities to advance forest disturbance detection
and address the issue of non-detection observed in DETER im-
ages and polygons is to use a mask that indicates forest areas,
such as the one generated by PRODES. This approach could
help refine the analysis by focusing on regions where forest
cover is expected, thereby improving the accuracy of disturb-
ance detection and reducing the likelihood of missing smaller or
gradual changes in the forest cover. Integrating high-resolution
images from Sentinel-2 with such masks could enhance the sys-
tem’s ability to detect and monitor deforestation events more
effectively.

Developing operational tools based on these methods can signi-
ficantly enhance the existing systems used by INPE, providing
indications to guide the work already being conducted by the
institute’s teams. This integration can facilitate more precise
real-time decision-making and improve the overall efficiency
of forest monitoring and conservation efforts.
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